Mostrar el registro sencillo del ítem
dc.contributor.author | Romaguera Bonilla, Salvador | es_ES |
dc.date.accessioned | 2023-07-27T18:01:32Z | |
dc.date.available | 2023-07-27T18:01:32Z | |
dc.date.issued | 2022-08-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/195662 | |
dc.description.abstract | [EN] We characterize the completeness of fuzzy quasi-metric spaces by means of a fixed point theorem of Kannan-type. Thus, we extend the classical characterization of metric completeness due to Subrahmanyam as well as recent results in the literature on the characterization of quasi-metric completeness and fuzzy metric completeness, respectively. We also introduce and discuss contractions of Chatterjea-type in this asymmetric context. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Erdal Karapı | es_ES |
dc.publisher | nar | es_ES |
dc.relation.ispartof | Results in Nonlinear Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fuzzy quasi-metric space | es_ES |
dc.subject | Quasi-metric space | es_ES |
dc.subject | Complete | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Kannan contraction | es_ES |
dc.subject | Chatterjea contraction | es_ES |
dc.title | Contractions of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.53006/rna.1140743 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Romaguera Bonilla, S. (2022). Contractions of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces. Results in Nonlinear Analysis. 5:347-359. https://doi.org/10.53006/rna.1140743 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.53006/rna.1140743 | es_ES |
dc.description.upvformatpinicio | 347 | es_ES |
dc.description.upvformatpfin | 359 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.identifier.eissn | 2636-7556 | es_ES |
dc.relation.pasarela | S\474125 | es_ES |
dc.description.references | [1] M. Abbas, B. Ali, S. Romaguera, Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness, Filomat 29 (2015) 1217-1222. | es_ES |
dc.description.references | [2] C. Alegre, H. D˘ ag, S. Romaguera, P. Tirado, Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theo- rems, Hacettepe J. Math. Stat. 46 (2017) 67-76. | es_ES |
dc.description.references | [3] F. Castro-Company, S. Romaguera, P. Tirado, The bicompletion of fuzzy quasi-metric spaces, Fuzzy Sets Syst. 166 (2011) 56-64. | es_ES |
dc.description.references | [4] S.K. Chatterjea, Fixed point theorems. C. R. Acad. Bulgare Sci. 25 (1972) 727-730. | es_ES |
dc.description.references | [5] Y.J. Cho, M. Grabiec, V. Radu, On non Symmetric Topological and Probabilistic Structures, Nova Science Publisher, Inc. New York, 2006 | es_ES |
dc.description.references | [6] S. Cobza¸ s, Functional Analysis in Asymmetric Normed spaces, Frontiers in Mathematics, Birkha˘ user/Springer Basel AG, Basel, Switzer- land, 2013. | es_ES |
dc.description.references | [7] P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982. | es_ES |
dc.description.references | [8] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994) 395-399. | es_ES |
dc.description.references | [9] A. George, P. Veeramani, On some results of analysis of fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997) 365-368. | es_ES |
dc.description.references | [10] V. Gregori, S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol. 5 (2004) 129-136. | es_ES |
dc.description.references | [11] T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967) 436-437. | es_ES |
dc.description.references | [12] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71-76. | es_ES |
dc.description.references | [13] A.W. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976) 81-86. | es_ES |
dc.description.references | [14] E. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic, Dordrecht, 2000. | es_ES |
dc.description.references | [15] I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975) 326-334. | es_ES |
dc.description.references | [16] R.P. Pant, A. Pant, R.M. Nikolic, S.N. Jesic, A characterization of completeness of Menger PM-spaces, J. Fixed Point Theory Appl. (2019) 21:90. | es_ES |
dc.description.references | [17] V. Radu, Some suitable metrics on fuzzy metric spaces, Fixed Point Theory 5 (2004) 323-347. | es_ES |
dc.description.references | [18] S. Romaguera, A fixed point theorem of Kannan type that characterizes fuzzy metric completeness, Filomat 34 (2020) 4811-4819. | es_ES |
dc.description.references | [19] S. Romaguera, w-distances on fuzzy metic spaces and fixed points, Mathematics 2020, 8, 1909. | es_ES |
dc.description.references | [20] S. Romaguera, P. Tirado, A characterization of quasi-metric completeness in terms of α − ψ-contractive mappings having fixed points, Mathematics 2020, 8, 16. | es_ES |
dc.description.references | [21] S. Romaguera, P. Tirado, Characterizing complete fuzzy metric spaces via fixed point results, Mathematics 2020, 8, 273. | es_ES |
dc.description.references | [22] S. Romaguera, P. Tirado, Contractive self maps of α − ψ-type on fuzzy metric spaces, Dyn. Syst. Appl. 30 (2021) 359-370. | es_ES |
dc.description.references | [23] P.V. Subrahmanyam, Completeness and fixed-points, Mh. Math. 80 (1975) 325-330. | es_ES |
dc.description.references | [24] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861- 1869. | es_ES |
dc.description.references | [25] T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal. 8 (1996) 371-382. | es_ES |