- -

Positivity-preserving methods for ordinary differential equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso
Positivity-preserving methods for ordinary differential equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Iserles, Arieh es_ES
dc.contributor.author MacNamara, Shev es_ES
dc.date.accessioned 2023-09-08T18:00:43Z
dc.date.available 2023-09-08T18:00:43Z
dc.date.issued 2022-08-12 es_ES
dc.identifier.issn 0764-583X es_ES
dc.identifier.uri http://hdl.handle.net/10251/196131
dc.description.abstract [EN] Many important applications are modelled by differential equations with positive solutions. However, it remains an outstanding open problem to develop numerical methods that are both (i) of a high order of accuracy and (ii) capable of preserving positivity. It is known that the two main families of numerical methods, Runge-Kutta methods and multistep methods, face an order barrier. If they preserve positivity, then they are constrained to low accuracy: they cannot be better than first order. We propose novel methods that overcome this barrier: second order methods that preserve positivity unconditionally and a third order method that preserves positivity under very mild conditions. Our methods apply to a large class of differential equations that have a special graph Laplacian structure, which we elucidate. The equations need be neither linear nor autonomous and the graph Laplacian need not be symmetric. This algebraic structure arises naturally in many important applications where positivity is required. We showcase our new methods on applications where standard high order methods fail to preserve positivity, including infectious diseases, Markov processes, master equations and chemical reactions. es_ES
dc.description.sponsorship The authors thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme "Geometry, compatibility and structure preservation in computational differential equations" when work on this paper was undertaken. This work was supported by EPSRC grant EP/R014604/1. S.B. has been supported by project PID2019-104927GB-C21 (AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher EDP Sciences es_ES
dc.relation.ispartof ESAIM Mathematical Modelling and Numerical Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Positivity-preserving methods es_ES
dc.subject Graph Laplacian matrices es_ES
dc.subject Exponential integrators es_ES
dc.subject Magnus integrators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Positivity-preserving methods for ordinary differential equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1051/m2an/2022042 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//EP%2FR014604%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PID2019-104927GB-C21//METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Iserles, A.; Macnamara, S. (2022). Positivity-preserving methods for ordinary differential equations. ESAIM Mathematical Modelling and Numerical Analysis. 56(6):1843-1870. https://doi.org/10.1051/m2an/2022042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1051/m2an/2022042 es_ES
dc.description.upvformatpinicio 1843 es_ES
dc.description.upvformatpfin 1870 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\485818 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem