Mostrar el registro sencillo del ítem
dc.contributor.author | A. Gil | es_ES |
dc.contributor.author | Navarro, Roberto | es_ES |
dc.contributor.author | Quintero-Igeño, Pedro-Manuel | es_ES |
dc.contributor.author | Mares-Bou, Andrea | es_ES |
dc.contributor.author | Pérez, Manuel | es_ES |
dc.contributor.author | Montero, Anastasio | es_ES |
dc.date.accessioned | 2023-09-08T18:00:53Z | |
dc.date.available | 2023-09-08T18:00:53Z | |
dc.date.issued | 2022-08 | es_ES |
dc.identifier.issn | 1617-7959 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/196138 | |
dc.description.abstract | [EN] Mechanical circulatory support using ventricular assist devices has become commonplace in the treatment of patients suffering from advanced stages of heart failure. While blood damage generated by these devices has been evaluated in depth, their hemodynamic performance has been investigated much less. This work presents the analysis of the complete operating map of a left ventricular assist device, in terms of pressure head, power and efficiency. Further investigation into its hemocompatibility is included as well. To achieve these objectives, computational fluid dynamics simulations of a centrifugal blood pump with a wide-blade impeller were performed. Several conditions were considered by varying the rotational speed and volumetric flow rate. Regarding the device's hemocompatibility, blood damage was evaluated by means of the hemolysis index. By relating the hemocompatibility of the device to its hemodynamic performance, the results have demonstrated that the highest hemolysis occurs at low flow rates, corresponding to operating conditions of low efficiency. Both performance and hemocompatibility are affected by the gap clearance. An innovative investigation into the influence of this design parameter has yielded decreased efficiencies and increased hemolysis as the gap clearance is reduced. As a further novelty, pump operating maps were non-dimensionalized to highlight the influence of Reynolds number, which allows their application to any working condition. The pump's operating range places it in the transitional regime between laminar and turbulent, leading to enhanced efficiency for the highest Reynolds number. | es_ES |
dc.description.sponsorship | This study was partially funded by UPV-La Fe through the innovation projects subprogram (reference MODELVAD). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Biomechanics and Modeling in Mechanobiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Centrifugal blood pump | es_ES |
dc.subject | Operating map | es_ES |
dc.subject | Non-dimensional analysis | es_ES |
dc.subject | Gap clearance | es_ES |
dc.subject | Shear stress | es_ES |
dc.subject | Hemolysis | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10237-022-01585-2 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | A. Gil; Navarro, R.; Quintero-Igeño, P.; Mares-Bou, A.; Pérez, M.; Montero, A. (2022). CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance. Biomechanics and Modeling in Mechanobiology. 21(4):1201-1215. https://doi.org/10.1007/s10237-022-01585-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10237-022-01585-2 | es_ES |
dc.description.upvformatpinicio | 1201 | es_ES |
dc.description.upvformatpfin | 1215 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 35546646 | es_ES |
dc.relation.pasarela | S\481669 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Hospital Universitari i Politècnic La Fe | es_ES |
dc.description.references | Almenar L, Díaz Molina B, Comín Colet J, Pérez De La Sota E (2011) Insuficiencia cardiaca y trasplante. Rev Esp Cardiol 64:42–49. https://doi.org/10.1016/S0300-8932(11)70006-9 | es_ES |
dc.description.references | Al-Quthami AH, Jumean M, Kociol R et al (2012) Eptifibatide for the treatment of heartmate II left ventricular assist device thrombosis. Circ Heart Fail 5:68–70. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966804 | es_ES |
dc.description.references | Avci M, Heck M, O’Rear EA, Papavassiliou DV (2021) Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01471-3 | es_ES |
dc.description.references | Bartoli CR, Zhang D, Kang J et al (2018) Clinical and in vitro evidence that subclinical hemolysis contributes to LVAD thrombosis. Ann Thorac Surg 105:807–814. https://doi.org/10.1016/j.athoracsur.2017.05.060 | es_ES |
dc.description.references | Billett HH (1990) Hemoglobin and Hematocrit. In: HK W, WD H, JW H (eds) Clinical methods: the history, physical, and laboratory examinations | es_ES |
dc.description.references | Bluestein D, Chandran KB, Manning KB (2010) Towards non-thrombogenic performance of blood recirculating devices. Ann Biomed Eng 38:1236–1256. https://doi.org/10.1007/s10439-010-9905-9 | es_ES |
dc.description.references | Boneu B, Fernandez F (1987) The role of the hematocrit in bleeding. Transfus Med Rev 1:182–185. https://doi.org/10.1016/S0887-7963(87)70020-0 | es_ES |
dc.description.references | Chen Z, Jena SK, Giridharan GA et al (2019) Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput 57:807–818. https://doi.org/10.1007/s11517-018-1922-0 | es_ES |
dc.description.references | Craven BA, Aycock KI, Herbertson LH, Malinauskas RA (2019) A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Biomech Model Mechanobiol 18:1005–1030. https://doi.org/10.1007/s10237-019-01126-4 | es_ES |
dc.description.references | Farinas MI, Garon A, Lacasse D, N’dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688–696. https://doi.org/10.1115/1.2241663 | es_ES |
dc.description.references | Foster G (2018) Third-generation ventricular assist devices. In: Gregory SD, Stevens MC, and Fraser JF (eds) Mechanical circulatory and respiratory support. Elsevier, London | es_ES |
dc.description.references | Fraser KH, Taskin ME, Griffith BP, Wu ZJ (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280. https://doi.org/10.1016/j.medengphy.2010.10.014 | es_ES |
dc.description.references | Galindo J, Serrano JR, Navarro R, García-Olivas G (2020) Numerical modeling of centrifugal compressors with heterogeneous incoming flow due to low pressure exhaust gas recirculation. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines. Virtual, Online. September 21–25, 2020. V008T20A028. ASME. https://doi.org/10.1115/GT2020-16030 | es_ES |
dc.description.references | Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28:1016–1025. https://doi.org/10.1111/j.1525-1594.2004.00026.x | es_ES |
dc.description.references | Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297. https://doi.org/10.1007/s10439-007-9411-x | es_ES |
dc.description.references | Granegger M, Thamsen B, Schlöglhofer T et al (2020) Blood trauma potential of the heartware ventricular assist device in pediatric patients. J Thorac Cardiovasc Surg 159:1519–1527. https://doi.org/10.1016/j.jtcvs.2019.06.084 | es_ES |
dc.description.references | Gross-Hardt S, Boehning F, Steinseifer U et al (2019) Mesh sensitivity analysis for quantitative shear stress assessment in blood pumps using computational fluid dynamics. J Biomech Eng. https://doi.org/10.1115/1.4042043 | es_ES |
dc.description.references | Heras S (2011) Fluidos, bombas e instalaciones hidráulicas | es_ES |
dc.description.references | Heuser G, Opitz R (1980) A couette viscometer for short time shearing of blood. Biorheology 17:17–24 | es_ES |
dc.description.references | Jain P, Shehab S, Muthiah K et al (2019) Insights into myocardial oxygen consumption, energetics, and efficiency under left ventricular assist device support using noninvasive pressure-volume loops. Circ Heart Fail 12:1–12. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006191 | es_ES |
dc.description.references | Karimi MS, Razzaghi P, Raisee M et al (2021) Stochastic simulation of the FDA centrifugal blood pump benchmark. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01482-0 | es_ES |
dc.description.references | Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl 33:555–564. https://doi.org/10.1016/j.healun.2014.04.010 | es_ES |
dc.description.references | Larose JA, Tamez D, Ashenuga M, Reyes C (2010) Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J 56:285–289. https://doi.org/10.1097/MAT.0b013e3181dfbab5 | es_ES |
dc.description.references | McKellar S (2020) A history of mechanical circulatory support. In: Karimov J, Fukamachi KSR (eds) Mechanical support for heart failure. Springer, pp 3–17 | es_ES |
dc.description.references | Menter FR (1993) Zonal two equation k-w turbulence models for aerodynamic flows. AIAA | es_ES |
dc.description.references | Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146. https://doi.org/10.1136/hrt.2003.025270 | es_ES |
dc.description.references | Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Rezaienia MA, Paul G, Avital E et al (2018) Computational parametric study of the axial and radial clearances in a centrifugal rotary blood pump. ASAIO J 64:643–650. https://doi.org/10.1097/MAT.0000000000000700 | es_ES |
dc.description.references | Schöps M, Groß-Hardt SH, Schmitz-Rode T et al (2021) Hemolysis at low blood flow rates: in-vitro and in-silico evaluation of a centrifugal blood pump. J Transl Med 19:1–10. https://doi.org/10.1186/s12967-020-02599-z | es_ES |
dc.description.references | Siemens CD-Adapco. STAR-CCM+ release version 15.02.007 | es_ES |
dc.description.references | Smith WA, Allaire P, Antaki J et al (2004) Collected nondimensional performance of rotary dynamic blood pumps. ASAIO J 50:25–32. https://doi.org/10.1097/01.MAT.0000104817.39941.9C | es_ES |
dc.description.references | Song X, Throckmorton AL, Wood HG et al (2003) Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 27:938–941. https://doi.org/10.1046/j.1525-1594.2003.00026.x | es_ES |
dc.description.references | Spiegel M, Redel T, Zhang JJ et al (2011) Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Eng 14:9–22. https://doi.org/10.1080/10255842.2010.518565 | es_ES |
dc.description.references | Stehlik J, Edwards LB, Kucheryavaya AY et al (2010) The registry of the international society for heart and lung transplantation: twenty-seventh official adult heart transplant report. J Heart Lung Transpl 29:1089–1103. https://doi.org/10.1016/j.healun.2010.08.007 | es_ES |
dc.description.references | Taskin ME, Fraser KH, Zhang T et al (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58:363–372. https://doi.org/10.1097/MAT.0b013e318254833b | es_ES |
dc.description.references | Thamsen B, Blümel B, Schaller J et al (2015) Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif Organs 39:651–659. https://doi.org/10.1111/aor.12542 | es_ES |
dc.description.references | Thamsen B, Gülan U, Wiegmann L et al (2020) Assessment of the flow field in the HeartMate 3 using three-dimensional particle tracking velocimetry and comparison to computational fluid dynamics. ASAIO J 66:173–182. https://doi.org/10.1097/MAT.0000000000000987 | es_ES |
dc.description.references | Torregrosa AJ, Gil A, Quintero P, Tiseira A (2019) Enhanced design methodology of a low power stall regulated wind turbine. BEMT and MRF-RANS combination and comparison with existing designs. J Wind Eng Ind Aerodyn 190:230–244. https://doi.org/10.1016/j.jweia.2019.04.019 | es_ES |
dc.description.references | Wang Y, Shen P, Zheng M et al (2019) Influence of impeller speed patterns on hemodynamic characteristics and hemolysis of the blood pump. Appl Sci. https://doi.org/10.3390/app9214689 | es_ES |
dc.description.references | Wiegmann L, Boës S, de Zélicourt D et al (2018) Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility. Ann Biomed Eng 46:417–428. https://doi.org/10.1007/s10439-017-1951-0 | es_ES |
dc.description.references | Wiegmann L, Thamsen B, de Zélicourt D et al (2019) Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs 43:363–376. https://doi.org/10.1111/aor.13346 | es_ES |
dc.description.references | World Health Organization (2014) Global status report on noncommunicable diseases | es_ES |
dc.description.references | Wu P, Huo J, Dai W et al (2021) On the optimization of a centrifugal maglev blood pump through design variations. Front Physiol 12:1–10. https://doi.org/10.3389/fphys.2021.699891 | es_ES |
dc.description.references | Zhang J, Chen Z, Griffith BP, Wu ZJ (2020) Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. Int J Artif Organs 43:653–662. https://doi.org/10.1177/0391398820903734 | es_ES |