- -

CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author A. Gil es_ES
dc.contributor.author Navarro, Roberto es_ES
dc.contributor.author Quintero-Igeño, Pedro-Manuel es_ES
dc.contributor.author Mares-Bou, Andrea es_ES
dc.contributor.author Pérez, Manuel es_ES
dc.contributor.author Montero, Anastasio es_ES
dc.date.accessioned 2023-09-08T18:00:53Z
dc.date.available 2023-09-08T18:00:53Z
dc.date.issued 2022-08 es_ES
dc.identifier.issn 1617-7959 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196138
dc.description.abstract [EN] Mechanical circulatory support using ventricular assist devices has become commonplace in the treatment of patients suffering from advanced stages of heart failure. While blood damage generated by these devices has been evaluated in depth, their hemodynamic performance has been investigated much less. This work presents the analysis of the complete operating map of a left ventricular assist device, in terms of pressure head, power and efficiency. Further investigation into its hemocompatibility is included as well. To achieve these objectives, computational fluid dynamics simulations of a centrifugal blood pump with a wide-blade impeller were performed. Several conditions were considered by varying the rotational speed and volumetric flow rate. Regarding the device's hemocompatibility, blood damage was evaluated by means of the hemolysis index. By relating the hemocompatibility of the device to its hemodynamic performance, the results have demonstrated that the highest hemolysis occurs at low flow rates, corresponding to operating conditions of low efficiency. Both performance and hemocompatibility are affected by the gap clearance. An innovative investigation into the influence of this design parameter has yielded decreased efficiencies and increased hemolysis as the gap clearance is reduced. As a further novelty, pump operating maps were non-dimensionalized to highlight the influence of Reynolds number, which allows their application to any working condition. The pump's operating range places it in the transitional regime between laminar and turbulent, leading to enhanced efficiency for the highest Reynolds number. es_ES
dc.description.sponsorship This study was partially funded by UPV-La Fe through the innovation projects subprogram (reference MODELVAD). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Biomechanics and Modeling in Mechanobiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Centrifugal blood pump es_ES
dc.subject Operating map es_ES
dc.subject Non-dimensional analysis es_ES
dc.subject Gap clearance es_ES
dc.subject Shear stress es_ES
dc.subject Hemolysis es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10237-022-01585-2 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation A. Gil; Navarro, R.; Quintero-Igeño, P.; Mares-Bou, A.; Pérez, M.; Montero, A. (2022). CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance. Biomechanics and Modeling in Mechanobiology. 21(4):1201-1215. https://doi.org/10.1007/s10237-022-01585-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10237-022-01585-2 es_ES
dc.description.upvformatpinicio 1201 es_ES
dc.description.upvformatpfin 1215 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 35546646 es_ES
dc.relation.pasarela S\481669 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Hospital Universitari i Politècnic La Fe es_ES
dc.description.references Almenar L, Díaz Molina B, Comín Colet J, Pérez De La Sota E (2011) Insuficiencia cardiaca y trasplante. Rev Esp Cardiol 64:42–49. https://doi.org/10.1016/S0300-8932(11)70006-9 es_ES
dc.description.references Al-Quthami AH, Jumean M, Kociol R et al (2012) Eptifibatide for the treatment of heartmate II left ventricular assist device thrombosis. Circ Heart Fail 5:68–70. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966804 es_ES
dc.description.references Avci M, Heck M, O’Rear EA, Papavassiliou DV (2021) Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01471-3 es_ES
dc.description.references Bartoli CR, Zhang D, Kang J et al (2018) Clinical and in vitro evidence that subclinical hemolysis contributes to LVAD thrombosis. Ann Thorac Surg 105:807–814. https://doi.org/10.1016/j.athoracsur.2017.05.060 es_ES
dc.description.references Billett HH (1990) Hemoglobin and Hematocrit. In: HK W, WD H, JW H (eds) Clinical methods: the history, physical, and laboratory examinations es_ES
dc.description.references Bluestein D, Chandran KB, Manning KB (2010) Towards non-thrombogenic performance of blood recirculating devices. Ann Biomed Eng 38:1236–1256. https://doi.org/10.1007/s10439-010-9905-9 es_ES
dc.description.references Boneu B, Fernandez F (1987) The role of the hematocrit in bleeding. Transfus Med Rev 1:182–185. https://doi.org/10.1016/S0887-7963(87)70020-0 es_ES
dc.description.references Chen Z, Jena SK, Giridharan GA et al (2019) Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput 57:807–818. https://doi.org/10.1007/s11517-018-1922-0 es_ES
dc.description.references Craven BA, Aycock KI, Herbertson LH, Malinauskas RA (2019) A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Biomech Model Mechanobiol 18:1005–1030. https://doi.org/10.1007/s10237-019-01126-4 es_ES
dc.description.references Farinas MI, Garon A, Lacasse D, N’dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688–696. https://doi.org/10.1115/1.2241663 es_ES
dc.description.references Foster G (2018) Third-generation ventricular assist devices. In: Gregory SD, Stevens MC, and Fraser JF (eds) Mechanical circulatory and respiratory support. Elsevier, London es_ES
dc.description.references Fraser KH, Taskin ME, Griffith BP, Wu ZJ (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280. https://doi.org/10.1016/j.medengphy.2010.10.014 es_ES
dc.description.references Galindo J, Serrano JR, Navarro R, García-Olivas G (2020) Numerical modeling of centrifugal compressors with heterogeneous incoming flow due to low pressure exhaust gas recirculation. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines. Virtual, Online. September 21–25, 2020. V008T20A028. ASME. https://doi.org/10.1115/GT2020-16030 es_ES
dc.description.references Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28:1016–1025. https://doi.org/10.1111/j.1525-1594.2004.00026.x es_ES
dc.description.references Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297. https://doi.org/10.1007/s10439-007-9411-x es_ES
dc.description.references Granegger M, Thamsen B, Schlöglhofer T et al (2020) Blood trauma potential of the heartware ventricular assist device in pediatric patients. J Thorac Cardiovasc Surg 159:1519–1527. https://doi.org/10.1016/j.jtcvs.2019.06.084 es_ES
dc.description.references Gross-Hardt S, Boehning F, Steinseifer U et al (2019) Mesh sensitivity analysis for quantitative shear stress assessment in blood pumps using computational fluid dynamics. J Biomech Eng. https://doi.org/10.1115/1.4042043 es_ES
dc.description.references Heras S (2011) Fluidos, bombas e instalaciones hidráulicas es_ES
dc.description.references Heuser G, Opitz R (1980) A couette viscometer for short time shearing of blood. Biorheology 17:17–24 es_ES
dc.description.references Jain P, Shehab S, Muthiah K et al (2019) Insights into myocardial oxygen consumption, energetics, and efficiency under left ventricular assist device support using noninvasive pressure-volume loops. Circ Heart Fail 12:1–12. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006191 es_ES
dc.description.references Karimi MS, Razzaghi P, Raisee M et al (2021) Stochastic simulation of the FDA centrifugal blood pump benchmark. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01482-0 es_ES
dc.description.references Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl 33:555–564. https://doi.org/10.1016/j.healun.2014.04.010 es_ES
dc.description.references Larose JA, Tamez D, Ashenuga M, Reyes C (2010) Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J 56:285–289. https://doi.org/10.1097/MAT.0b013e3181dfbab5 es_ES
dc.description.references McKellar S (2020) A history of mechanical circulatory support. In: Karimov J, Fukamachi KSR (eds) Mechanical support for heart failure. Springer, pp 3–17 es_ES
dc.description.references Menter FR (1993) Zonal two equation k-w turbulence models for aerodynamic flows. AIAA es_ES
dc.description.references Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146. https://doi.org/10.1136/hrt.2003.025270 es_ES
dc.description.references Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge es_ES
dc.description.references Rezaienia MA, Paul G, Avital E et al (2018) Computational parametric study of the axial and radial clearances in a centrifugal rotary blood pump. ASAIO J 64:643–650. https://doi.org/10.1097/MAT.0000000000000700 es_ES
dc.description.references Schöps M, Groß-Hardt SH, Schmitz-Rode T et al (2021) Hemolysis at low blood flow rates: in-vitro and in-silico evaluation of a centrifugal blood pump. J Transl Med 19:1–10. https://doi.org/10.1186/s12967-020-02599-z es_ES
dc.description.references Siemens CD-Adapco. STAR-CCM+ release version 15.02.007 es_ES
dc.description.references Smith WA, Allaire P, Antaki J et al (2004) Collected nondimensional performance of rotary dynamic blood pumps. ASAIO J 50:25–32. https://doi.org/10.1097/01.MAT.0000104817.39941.9C es_ES
dc.description.references Song X, Throckmorton AL, Wood HG et al (2003) Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 27:938–941. https://doi.org/10.1046/j.1525-1594.2003.00026.x es_ES
dc.description.references Spiegel M, Redel T, Zhang JJ et al (2011) Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Eng 14:9–22. https://doi.org/10.1080/10255842.2010.518565 es_ES
dc.description.references Stehlik J, Edwards LB, Kucheryavaya AY et al (2010) The registry of the international society for heart and lung transplantation: twenty-seventh official adult heart transplant report. J Heart Lung Transpl 29:1089–1103. https://doi.org/10.1016/j.healun.2010.08.007 es_ES
dc.description.references Taskin ME, Fraser KH, Zhang T et al (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58:363–372. https://doi.org/10.1097/MAT.0b013e318254833b es_ES
dc.description.references Thamsen B, Blümel B, Schaller J et al (2015) Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artif Organs 39:651–659. https://doi.org/10.1111/aor.12542 es_ES
dc.description.references Thamsen B, Gülan U, Wiegmann L et al (2020) Assessment of the flow field in the HeartMate 3 using three-dimensional particle tracking velocimetry and comparison to computational fluid dynamics. ASAIO J 66:173–182. https://doi.org/10.1097/MAT.0000000000000987 es_ES
dc.description.references Torregrosa AJ, Gil A, Quintero P, Tiseira A (2019) Enhanced design methodology of a low power stall regulated wind turbine. BEMT and MRF-RANS combination and comparison with existing designs. J Wind Eng Ind Aerodyn 190:230–244. https://doi.org/10.1016/j.jweia.2019.04.019 es_ES
dc.description.references Wang Y, Shen P, Zheng M et al (2019) Influence of impeller speed patterns on hemodynamic characteristics and hemolysis of the blood pump. Appl Sci. https://doi.org/10.3390/app9214689 es_ES
dc.description.references Wiegmann L, Boës S, de Zélicourt D et al (2018) Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility. Ann Biomed Eng 46:417–428. https://doi.org/10.1007/s10439-017-1951-0 es_ES
dc.description.references Wiegmann L, Thamsen B, de Zélicourt D et al (2019) Fluid dynamics in the HeartMate 3: influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs 43:363–376. https://doi.org/10.1111/aor.13346 es_ES
dc.description.references World Health Organization (2014) Global status report on noncommunicable diseases es_ES
dc.description.references Wu P, Huo J, Dai W et al (2021) On the optimization of a centrifugal maglev blood pump through design variations. Front Physiol 12:1–10. https://doi.org/10.3389/fphys.2021.699891 es_ES
dc.description.references Zhang J, Chen Z, Griffith BP, Wu ZJ (2020) Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. Int J Artif Organs 43:653–662. https://doi.org/10.1177/0391398820903734 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem