- -

Spoilage yeasts in fermented vegetables: conventional and novel control strategies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spoilage yeasts in fermented vegetables: conventional and novel control strategies

Mostrar el registro completo del ítem

Ballester, E.; Ribes-Llop, S.; Barat Baviera, JM.; Fuentes López, A. (2022). Spoilage yeasts in fermented vegetables: conventional and novel control strategies. European Food Research and Technology. 248(2):315-328. https://doi.org/10.1007/s00217-021-03888-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196712

Ficheros en el ítem

Metadatos del ítem

Título: Spoilage yeasts in fermented vegetables: conventional and novel control strategies
Autor: Ballester, Elena Ribes-Llop, Susana Barat Baviera, José Manuel Fuentes López, Ana
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Fermented vegetables are produced by the growth of different microorganisms present in raw products. Yeasts are essential in food fermentations, but they are also potential spoilage agents that can cause several ...[+]
Palabras clave: Vegetable fermentation , Spoilage yeasts , Conventional treatments , Alternative treatments , Novel technologies
Derechos de uso: Reserva de todos los derechos
Fuente:
European Food Research and Technology. (issn: 1438-2377 )
DOI: 10.1007/s00217-021-03888-7
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00217-021-03888-7
Tipo: Artículo

References

Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Folingné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid HEJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102. https://doi.org/10.1016/j.copbio.2016.11.010

Septembre-Malaterre A, Remize F, Poucheret P (2018) Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Res Int 104:86–99. https://doi.org/10.1016/j.foodres.2017.09.031

Aragón F, Perdigón G, de Moreno de LeBlanc A (2014) Modification in the diet can induce beneficial effects against breast cancer. World J Clin Oncol 5(3):455. https://doi.org/10.5306/wjco.v5.i3.455 [+]
Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Folingné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid HEJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102. https://doi.org/10.1016/j.copbio.2016.11.010

Septembre-Malaterre A, Remize F, Poucheret P (2018) Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Res Int 104:86–99. https://doi.org/10.1016/j.foodres.2017.09.031

Aragón F, Perdigón G, de Moreno de LeBlanc A (2014) Modification in the diet can induce beneficial effects against breast cancer. World J Clin Oncol 5(3):455. https://doi.org/10.5306/wjco.v5.i3.455

Liu T, Zhou K, Yin S, Liu S, Zhu Y, Yang Y, Wang C (2019) Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan pickle. Int J Biol Macromol 134:516–526. https://doi.org/10.1016/j.ijbiomac.2019.05.010

Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z (2019) Fermentation-enabled wellness foods: a fresh perspective. Food Sci Hum Wellness 8:203–243. https://doi.org/10.1016/j.fshw.2019.08.003

Behera SS, Sheikha AFE, Hammami R, Kumar A (2020) Traditionally fermented pickles: how the microbial diversity associated with their nutritional and health benefits? J Funct Foods 70:103971. https://doi.org/10.1016/j.jff.2020.103971

Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R (2020) Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 19:184–217. https://doi.org/10.1111/1541-4337.12520

Golomb BL, Morales V, Jung A, Yau B, Boundy-Mills KL, Marco ML (2013) Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol 33:97–106. https://doi.org/10.1016/j.fm.2012.09.004

Franco W, Pérez-Díaz IM, Johanningsmeier SD, Mcfeeters RF (2012) Characteristics of spoilage-associated secondary cucumber fermentation. Appl Environ Microbiol 78:1273–1284. https://doi.org/10.1128/AEM.06605-11

Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A (2013) Microbial stability and quality of seasoned cracked green Aloreña table olives packed in diverse chloride salt mixtures. J Food Prot 76(11):1923–1932. https://doi.org/10.4315/0362-028X.JFP-12-504

Khanna S (2019) Effects of salt concentration on the physicochemical properties and microbial safety of spontaneously fermented cabbage. Electronic Theses and Dissertations, 3013

Arroyo-López FN, Bautista-Gallego J, Durán-Quintana MC, Garrido-Fernández A (2008) Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol 25:566–574. https://doi.org/10.1016/j.fm.2008.02.007

Alves M, Esteves E, Quintas C (2015) Effect of preservatives and acidifying agents on the shelf life of packed cracked green table olives from Maçanilha cultivar. Food Packag Shelf Life 5:32–40. https://doi.org/10.1016/j.fpsl.2015.05.001

Romero-Gil V, García-García P, Garrido-Fernández A, Arroyo-López FN (2016) Susceptibility and resistance of lactic acid bacteria and yeasts against preservatives with potential application in table olives. Food Microbiol 54:72–79. https://doi.org/10.1016/j.fm.2015.10.014

García-Serrano P, Romero C, Medina E, García-García P, de Castro A, Brenes M (2020) Effect of calcium on the preservation of green olives intended for black ripe olive processing under free-sodium chloride conditions. LWT Food Sci Technol 118:108870. https://doi.org/10.1016/j.lwt.2019.108870

Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A (2011) Evaluating the effects of zinc chloride as a preservative in cracked table olive packing. J Food Prot 74(12):2169–2176. https://doi.org/10.4315/0362-028X.JFP-11-201

Argyri AA, Panagou EZ, Nychas GJE, Tassou CC (2014) Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing. Biomed Res Int. https://doi.org/10.1155/2014/515623

Gök SB, Pazir F (2020) Effect of treatments with UV-C light and electrolysed oxidizing water on decontamination and the quality of Gemlik black olives. J Consum Prot Food Saf 15:171–179. https://doi.org/10.1007/s00003-019-01263-z

Curiel GJ, Van Ejik HMJ, Lelieveld HLM (2000). In: Batt C, Batt CA, Robinson R (eds) Process hygiene risk and control of airborne contamination, 1st edn. Academic Press, London

Ocón E, Garijo P, Sanz S, Olarte C, López R, Santamaría P, Gutiérrez AR (2013) Analysis of airborne yeast in one winery over a period of one year. Food Control 30:585–589. https://doi.org/10.1016/j.foodcont.2012.07.051

Portugal C, Pinto L, Ribeiro M, Tenorio C, Igrejas G, Ruiz-Larrea F (2015) Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii. Int J Food Microbiol 210:113–120. https://doi.org/10.1016/j.ijfoodmicro.2015.06.005

Pereira EL, Ramalhosa E, Borges A, Pereira JA, Baptista P (2015) Yeast dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol 46:582–586. https://doi.org/10.1016/j.fm.2014.10.003

Shah NH, Singhal RS (2017). In: Pandey A, Du G, Sanromán M, Soccol CR, Dussap CG (eds) Fermented fruits and vegetables, 1st edn. Elsevier, Amsterdam

Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG (2018) Spoilage yeasts: what are the sources of contamination of foods and beverages? Int J Food Microbiol 286:98–110. https://doi.org/10.1016/j.ijfoodmicro.2018.07.031

Perpetuini G, Prete R, Garcia-González N, Alam MK, Corsetti A (2020) Table olives more than a fermented food. Foods 9:178. https://doi.org/10.3390/foods9020178

Arroyo-López FN, Durán-Quintana MC, Garrido-Fernández A (2007) Modelling of the growth–no growth interface of Issatchenkia occidentalis, an olive spoiling yeast, as a function of the culture media, NaCl, citric and sorbic acid concentrations: Study of its inactivation in the no growth region. Int J Food Microbiol 117:150–159. https://doi.org/10.1016/j.ijfoodmicro.2007.03.005

Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A (2012) Yeasts in table olive processing: Desirable or spoilage microorganisms? Int J Food Microbiol 160:42–49. https://doi.org/10.1016/j.ijfoodmicro.2012.08.003

Panagou EZ, Tassou CC, Katsaboxakis KZ (2002) Microbiological, physicochemical, and organoleptic changes in dry-salted olives of Thassos variety stored under different modified atmospheres at 4 and 20°C. Int J Food Sci Technol 37:635–641. https://doi.org/10.1046/j.1365-2621.2002.00590.x

Hung LD, Kyung KH (2006) Inhibition of yeast film formation in fermented vegetables by materials derived from garlic using cucumber pickle fermentation as a model system. Food Sci Biotechnol 15(3):1–5

Pérez-Díaz IM, McFeeters RF (2008) Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives. J Food Sci 73(6):287–291. https://doi.org/10.1111/j.1750-3841.2008.00795.x

Franco W, Pérez-Díaz IM (2012) Microbial interactions associated with secondary cucumber fermentation. J Appl Microbiol 114:161–172. https://doi.org/10.1111/jam.12022

Müller A, Rösch N, Cho G-S, Meinhardt AK, Kabisch J, Habermann D, Böhnlein C, Greiner R, Franz CMAP (2018) Influence of iodized table salt on fermentation characteristics and bacterial diversity during sauerkraut fermentation. Food Microbiol 76:473–480. https://doi.org/10.1016/j.fm.2018.07.009

World Health Organization (WHO) (2012) Guideline: sodium intake for adults and children. WHO, Geneva

Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A (2015) Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine. Food Microbiol 49:56–64. https://doi.org/10.1016/j.fm.2015.01.012

Pérez-Díaz IM, McFeeters RF, Moeller L, Johanningsmeier SD, Hayes J, Fornea DS, Rosenberg L, Gilbert C, Custis N, Beene K, Bass D (2015) Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride. J Food Sci 80(12):2827–2836. https://doi.org/10.1111/1750-3841.13107

Panagou EZ, Hondrodimou O, Mallouchos A, Nychas GJE (2011) A study of the implications of NaCl reduction in the fermentation profile of Conservolea natural black olives. Food Microbiol 28:1301–1307. https://doi.org/10.1016/j.fm.2011.05.008

Kailis SG, Harris DJ (2007) Multifragment melting analysis of yeast species isolated from spoiled fruits. J Appl Microbiol 124(2):522–534. https://doi.org/10.1111/jam.13645

Durán M, García P, Garrido A (2003) Características del crecimiento de levaduras de aceitunas de mesa a bajas temperaturas. Grasas Aceites 54:264–271

Abriouel H, Benomar N, Gálvez A, Pérez-Pulido R (2014) Preservation of Manzanilla Aloreña cracked green table olives by high hydrostatic pressure treatments singly or in combination with natural antimicrobials. LWT Food Sci Technol 56:427–431. https://doi.org/10.1016/j.lwt.2013.09.012

Campus M, Değirmencioğlu N, Comunian R (2018) Technologies and trends to improve table olive quality and safety. Front Microbiol 9:1–22. https://doi.org/10.3389/fmicb.2018.00617

Doulgeraki AI, Hondrodimou O, Iliopoulos V, Panagou EZ (2012) Lactic acid bacteria and yeast heterogeneity during aerobic and modified atmosphere packaging storage of natural black Conservolea olives in polyethylene pouches. Food Control 26:49–57. https://doi.org/10.1016/j.foodcont.2012.01.006

Rodríguez-Gómez F, Romero-Gil V, Arroyo-López FN, Baustista-Gallego J, García-García P, Garrido-Fernández A (2015) Effect of packaging and storage conditions on microbial survival, physicochemical characteristics and colour of non-thermally preserved green Spanish-style Manzanilla olive. LWT Food Sci Technol 63:367–375. https://doi.org/10.1016/j.lwt.2015.03.095

Johanningsmeier SD, Franco W, Perez-Diaz I, McFeeters RF (2012) Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage. J Food Sci 77(7):397–404. https://doi.org/10.1111/j.1750-3841.2012.02780.x

Koumba-Koné M, Tagro-Guéhi S, Durand N, Ban-Koffi L, Berthiot L, Fontana Tachon A, Brou K, Boulanger R, Montet D (2016) Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res Int 89:910–917. https://doi.org/10.1016/j.foodres.2016.04.010

Wolkers-Rooijackers JCM, Thomas SM, Nout MJR (2013) Effects of sodium reduction scenarios on fermentation and quality of sauerkraut. LWT Food Sci Technol 54:383–388. https://doi.org/10.1016/j.lwt.2013.07.002

Viander B, Mäki M, Palva A (2003) Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiol 20:391–395. https://doi.org/10.1016/S0740-0020(02)00150-8

Yang X, Hu W, Jiang A, Xiu Z, Ji Y, Guan Y, Sarengaowa YX (2019) Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. Food Biosci 30:100421. https://doi.org/10.1016/j.fbio.2019.100421

Pérez-Díaz IM, McFeeters RF (2010) Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts. J Food Sci Technol 75:204–208. https://doi.org/10.1111/j.1750-3841.2010.01587.x

Doan T, Babu D, Buescher R (2012) Inhibition of yeast in commercial pickle brines. J Food Res 3:1–7. https://doi.org/10.5539/jfr.v1n3p295

Hondrodimou O, Kourkoutas Y, Panagou EZ (2011) Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiol 28:621–627. https://doi.org/10.1016/j.fm.2010.11.015

Arroyo-López FN, Bautista-Gallego J, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A (2012) Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride. Int J Food Microbiol 155(3):257–262. https://doi.org/10.1016/j.ijfoodmicro.2012.02.007

Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives

Pradas I, del Pino B, Peña F, Ortiz V, Moreno-Rojas JM, Fernández-Fernández A, García-Mesa JA (2012) The use of high hydrostatic pressure (HHP) treatments for table olives preservation. Innov Food Sci Emerg Technol 13:64–68. https://doi.org/10.1016/j.ifset.2011.10.011

Peñas E, Frias J, Gomez R, Vidal-Valverde C (2010) High hydrostatic pressure can improve the microbial quality of sauerkraut during storage. Food Control 21:524–528. https://doi.org/10.1016/j.foodcont.2009.08.001

Li L, Feng L, Yi J, Hua C, Chen F, Liao X, Wang Z, Hu X (2010) High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage. Int J Food Microbiol 142(1–2):180–184. https://doi.org/10.1016/j.ijfoodmicro.2010.06.020

Pinto L, Baruzzi F, Cocolin L, Malfeito-Ferreira M (2020) Emerging technologies to control Brettanomyces spp. in wine: recent advances and future trends. Trends Food Sci Technol 99:88–100. https://doi.org/10.1016/j.tifs.2020.02.013

Blaszak M, Nowak A, Lachowicz S, Migdal W, Ochmian I (2019) E-beam irradiation and ozonation as an alternative to the sulphuric method of wine preservation. Molecules 24(18):3406. https://doi.org/10.3390/molecules24183406

Puértolas E, López N, Condón S, Raso J, Álvarez I (2009) Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 130(1):49–55. https://doi.org/10.1016/j.ijfoodmicro.2008.12.035

Alexopoulos A, Plessas S, Kourkoutas Y, Stefanis C, Vavias S, Voidarou C, Mantzourani I, Bezirtzoglou E (2017) Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. Int J Food Microbiol 246:5–11. https://doi.org/10.1016/j.ijfoodmicro.2017.01.018

Alcántara-Zavala AE, Figueroa-Cárdenas JdD, Pérez-Robles JF, Arámbula-Villa G, Miranda-Castilleja DE (2021) Thermosonication as an alternative method for processing, extending the shelf life, and conserving the quality of pulque: a non-dairy Mexican fermented beverage. Ultrason Sonochem 70:105290. https://doi.org/10.1016/j.ultsonch.2020.105290

Rios-Corripio G, Welti-Chanes J, Rodríguez-Martínez V, Guerrero-Beltrán JA (2020) Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. Innov Food Sci Emerg Technol 59:102249. https://doi.org/10.1016/j.ifset.2019.102249

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem