- -

Spoilage yeasts in fermented vegetables: conventional and novel control strategies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spoilage yeasts in fermented vegetables: conventional and novel control strategies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester, Elena es_ES
dc.contributor.author Ribes-Llop, Susana es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Fuentes López, Ana es_ES
dc.date.accessioned 2023-09-18T18:01:55Z
dc.date.available 2023-09-18T18:01:55Z
dc.date.issued 2022-02 es_ES
dc.identifier.issn 1438-2377 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196712
dc.description.abstract [EN] Fermented vegetables are produced by the growth of different microorganisms present in raw products. Yeasts are essential in food fermentations, but they are also potential spoilage agents that can cause several alterations to the final product. This review provides an overview of the most relevant spoilage yeasts present in fermented vegetables, such as table olives, fermented pickles, and sauerkraut, and the strategies that can be followed to prevent their presence in the final product by extending their shelf life. Conventional treatments have been applied for years to fermented products to reduce or control microbial contamination. In this group, although the application of thermal treatments and the use of chemical additives are remarkable, these technologies have some drawbacks. Nowadays, the food industry seeks techniques that are lethal to spoilage microorganisms, but have no adverse effects on the nutritional value, organoleptic characteristics, and beneficial product microbiota. Non-thermal technologies, such as high hydrostatic pressure, UV-C light, and electrolyzed oxidizing water treatments, applied alone or combined, are effective alternatives to conventional preservation treatments to achieve secure fermented vegetables with a high quality. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof European Food Research and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vegetable fermentation es_ES
dc.subject Spoilage yeasts es_ES
dc.subject Conventional treatments es_ES
dc.subject Alternative treatments es_ES
dc.subject Novel technologies es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Spoilage yeasts in fermented vegetables: conventional and novel control strategies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00217-021-03888-7 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Ballester, E.; Ribes-Llop, S.; Barat Baviera, JM.; Fuentes López, A. (2022). Spoilage yeasts in fermented vegetables: conventional and novel control strategies. European Food Research and Technology. 248(2):315-328. https://doi.org/10.1007/s00217-021-03888-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00217-021-03888-7 es_ES
dc.description.upvformatpinicio 315 es_ES
dc.description.upvformatpfin 328 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 248 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\450988 es_ES
dc.description.references Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Folingné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid HEJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102. https://doi.org/10.1016/j.copbio.2016.11.010 es_ES
dc.description.references Septembre-Malaterre A, Remize F, Poucheret P (2018) Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Res Int 104:86–99. https://doi.org/10.1016/j.foodres.2017.09.031 es_ES
dc.description.references Aragón F, Perdigón G, de Moreno de LeBlanc A (2014) Modification in the diet can induce beneficial effects against breast cancer. World J Clin Oncol 5(3):455. https://doi.org/10.5306/wjco.v5.i3.455 es_ES
dc.description.references Liu T, Zhou K, Yin S, Liu S, Zhu Y, Yang Y, Wang C (2019) Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan pickle. Int J Biol Macromol 134:516–526. https://doi.org/10.1016/j.ijbiomac.2019.05.010 es_ES
dc.description.references Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z (2019) Fermentation-enabled wellness foods: a fresh perspective. Food Sci Hum Wellness 8:203–243. https://doi.org/10.1016/j.fshw.2019.08.003 es_ES
dc.description.references Behera SS, Sheikha AFE, Hammami R, Kumar A (2020) Traditionally fermented pickles: how the microbial diversity associated with their nutritional and health benefits? J Funct Foods 70:103971. https://doi.org/10.1016/j.jff.2020.103971 es_ES
dc.description.references Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R (2020) Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 19:184–217. https://doi.org/10.1111/1541-4337.12520 es_ES
dc.description.references Golomb BL, Morales V, Jung A, Yau B, Boundy-Mills KL, Marco ML (2013) Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol 33:97–106. https://doi.org/10.1016/j.fm.2012.09.004 es_ES
dc.description.references Franco W, Pérez-Díaz IM, Johanningsmeier SD, Mcfeeters RF (2012) Characteristics of spoilage-associated secondary cucumber fermentation. Appl Environ Microbiol 78:1273–1284. https://doi.org/10.1128/AEM.06605-11 es_ES
dc.description.references Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A (2013) Microbial stability and quality of seasoned cracked green Aloreña table olives packed in diverse chloride salt mixtures. J Food Prot 76(11):1923–1932. https://doi.org/10.4315/0362-028X.JFP-12-504 es_ES
dc.description.references Khanna S (2019) Effects of salt concentration on the physicochemical properties and microbial safety of spontaneously fermented cabbage. Electronic Theses and Dissertations, 3013 es_ES
dc.description.references Arroyo-López FN, Bautista-Gallego J, Durán-Quintana MC, Garrido-Fernández A (2008) Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol 25:566–574. https://doi.org/10.1016/j.fm.2008.02.007 es_ES
dc.description.references Alves M, Esteves E, Quintas C (2015) Effect of preservatives and acidifying agents on the shelf life of packed cracked green table olives from Maçanilha cultivar. Food Packag Shelf Life 5:32–40. https://doi.org/10.1016/j.fpsl.2015.05.001 es_ES
dc.description.references Romero-Gil V, García-García P, Garrido-Fernández A, Arroyo-López FN (2016) Susceptibility and resistance of lactic acid bacteria and yeasts against preservatives with potential application in table olives. Food Microbiol 54:72–79. https://doi.org/10.1016/j.fm.2015.10.014 es_ES
dc.description.references García-Serrano P, Romero C, Medina E, García-García P, de Castro A, Brenes M (2020) Effect of calcium on the preservation of green olives intended for black ripe olive processing under free-sodium chloride conditions. LWT Food Sci Technol 118:108870. https://doi.org/10.1016/j.lwt.2019.108870 es_ES
dc.description.references Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A (2011) Evaluating the effects of zinc chloride as a preservative in cracked table olive packing. J Food Prot 74(12):2169–2176. https://doi.org/10.4315/0362-028X.JFP-11-201 es_ES
dc.description.references Argyri AA, Panagou EZ, Nychas GJE, Tassou CC (2014) Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing. Biomed Res Int. https://doi.org/10.1155/2014/515623 es_ES
dc.description.references Gök SB, Pazir F (2020) Effect of treatments with UV-C light and electrolysed oxidizing water on decontamination and the quality of Gemlik black olives. J Consum Prot Food Saf 15:171–179. https://doi.org/10.1007/s00003-019-01263-z es_ES
dc.description.references Curiel GJ, Van Ejik HMJ, Lelieveld HLM (2000). In: Batt C, Batt CA, Robinson R (eds) Process hygiene risk and control of airborne contamination, 1st edn. Academic Press, London es_ES
dc.description.references Ocón E, Garijo P, Sanz S, Olarte C, López R, Santamaría P, Gutiérrez AR (2013) Analysis of airborne yeast in one winery over a period of one year. Food Control 30:585–589. https://doi.org/10.1016/j.foodcont.2012.07.051 es_ES
dc.description.references Portugal C, Pinto L, Ribeiro M, Tenorio C, Igrejas G, Ruiz-Larrea F (2015) Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii. Int J Food Microbiol 210:113–120. https://doi.org/10.1016/j.ijfoodmicro.2015.06.005 es_ES
dc.description.references Pereira EL, Ramalhosa E, Borges A, Pereira JA, Baptista P (2015) Yeast dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol 46:582–586. https://doi.org/10.1016/j.fm.2014.10.003 es_ES
dc.description.references Shah NH, Singhal RS (2017). In: Pandey A, Du G, Sanromán M, Soccol CR, Dussap CG (eds) Fermented fruits and vegetables, 1st edn. Elsevier, Amsterdam es_ES
dc.description.references Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG (2018) Spoilage yeasts: what are the sources of contamination of foods and beverages? Int J Food Microbiol 286:98–110. https://doi.org/10.1016/j.ijfoodmicro.2018.07.031 es_ES
dc.description.references Perpetuini G, Prete R, Garcia-González N, Alam MK, Corsetti A (2020) Table olives more than a fermented food. Foods 9:178. https://doi.org/10.3390/foods9020178 es_ES
dc.description.references Arroyo-López FN, Durán-Quintana MC, Garrido-Fernández A (2007) Modelling of the growth–no growth interface of Issatchenkia occidentalis, an olive spoiling yeast, as a function of the culture media, NaCl, citric and sorbic acid concentrations: Study of its inactivation in the no growth region. Int J Food Microbiol 117:150–159. https://doi.org/10.1016/j.ijfoodmicro.2007.03.005 es_ES
dc.description.references Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A (2012) Yeasts in table olive processing: Desirable or spoilage microorganisms? Int J Food Microbiol 160:42–49. https://doi.org/10.1016/j.ijfoodmicro.2012.08.003 es_ES
dc.description.references Panagou EZ, Tassou CC, Katsaboxakis KZ (2002) Microbiological, physicochemical, and organoleptic changes in dry-salted olives of Thassos variety stored under different modified atmospheres at 4 and 20°C. Int J Food Sci Technol 37:635–641. https://doi.org/10.1046/j.1365-2621.2002.00590.x es_ES
dc.description.references Hung LD, Kyung KH (2006) Inhibition of yeast film formation in fermented vegetables by materials derived from garlic using cucumber pickle fermentation as a model system. Food Sci Biotechnol 15(3):1–5 es_ES
dc.description.references Pérez-Díaz IM, McFeeters RF (2008) Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives. J Food Sci 73(6):287–291. https://doi.org/10.1111/j.1750-3841.2008.00795.x es_ES
dc.description.references Franco W, Pérez-Díaz IM (2012) Microbial interactions associated with secondary cucumber fermentation. J Appl Microbiol 114:161–172. https://doi.org/10.1111/jam.12022 es_ES
dc.description.references Müller A, Rösch N, Cho G-S, Meinhardt AK, Kabisch J, Habermann D, Böhnlein C, Greiner R, Franz CMAP (2018) Influence of iodized table salt on fermentation characteristics and bacterial diversity during sauerkraut fermentation. Food Microbiol 76:473–480. https://doi.org/10.1016/j.fm.2018.07.009 es_ES
dc.description.references World Health Organization (WHO) (2012) Guideline: sodium intake for adults and children. WHO, Geneva es_ES
dc.description.references Bautista-Gallego J, Arroyo-López FN, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A (2015) Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine. Food Microbiol 49:56–64. https://doi.org/10.1016/j.fm.2015.01.012 es_ES
dc.description.references Pérez-Díaz IM, McFeeters RF, Moeller L, Johanningsmeier SD, Hayes J, Fornea DS, Rosenberg L, Gilbert C, Custis N, Beene K, Bass D (2015) Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride. J Food Sci 80(12):2827–2836. https://doi.org/10.1111/1750-3841.13107 es_ES
dc.description.references Panagou EZ, Hondrodimou O, Mallouchos A, Nychas GJE (2011) A study of the implications of NaCl reduction in the fermentation profile of Conservolea natural black olives. Food Microbiol 28:1301–1307. https://doi.org/10.1016/j.fm.2011.05.008 es_ES
dc.description.references Kailis SG, Harris DJ (2007) Multifragment melting analysis of yeast species isolated from spoiled fruits. J Appl Microbiol 124(2):522–534. https://doi.org/10.1111/jam.13645 es_ES
dc.description.references Durán M, García P, Garrido A (2003) Características del crecimiento de levaduras de aceitunas de mesa a bajas temperaturas. Grasas Aceites 54:264–271 es_ES
dc.description.references Abriouel H, Benomar N, Gálvez A, Pérez-Pulido R (2014) Preservation of Manzanilla Aloreña cracked green table olives by high hydrostatic pressure treatments singly or in combination with natural antimicrobials. LWT Food Sci Technol 56:427–431. https://doi.org/10.1016/j.lwt.2013.09.012 es_ES
dc.description.references Campus M, Değirmencioğlu N, Comunian R (2018) Technologies and trends to improve table olive quality and safety. Front Microbiol 9:1–22. https://doi.org/10.3389/fmicb.2018.00617 es_ES
dc.description.references Doulgeraki AI, Hondrodimou O, Iliopoulos V, Panagou EZ (2012) Lactic acid bacteria and yeast heterogeneity during aerobic and modified atmosphere packaging storage of natural black Conservolea olives in polyethylene pouches. Food Control 26:49–57. https://doi.org/10.1016/j.foodcont.2012.01.006 es_ES
dc.description.references Rodríguez-Gómez F, Romero-Gil V, Arroyo-López FN, Baustista-Gallego J, García-García P, Garrido-Fernández A (2015) Effect of packaging and storage conditions on microbial survival, physicochemical characteristics and colour of non-thermally preserved green Spanish-style Manzanilla olive. LWT Food Sci Technol 63:367–375. https://doi.org/10.1016/j.lwt.2015.03.095 es_ES
dc.description.references Johanningsmeier SD, Franco W, Perez-Diaz I, McFeeters RF (2012) Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage. J Food Sci 77(7):397–404. https://doi.org/10.1111/j.1750-3841.2012.02780.x es_ES
dc.description.references Koumba-Koné M, Tagro-Guéhi S, Durand N, Ban-Koffi L, Berthiot L, Fontana Tachon A, Brou K, Boulanger R, Montet D (2016) Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res Int 89:910–917. https://doi.org/10.1016/j.foodres.2016.04.010 es_ES
dc.description.references Wolkers-Rooijackers JCM, Thomas SM, Nout MJR (2013) Effects of sodium reduction scenarios on fermentation and quality of sauerkraut. LWT Food Sci Technol 54:383–388. https://doi.org/10.1016/j.lwt.2013.07.002 es_ES
dc.description.references Viander B, Mäki M, Palva A (2003) Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiol 20:391–395. https://doi.org/10.1016/S0740-0020(02)00150-8 es_ES
dc.description.references Yang X, Hu W, Jiang A, Xiu Z, Ji Y, Guan Y, Sarengaowa YX (2019) Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. Food Biosci 30:100421. https://doi.org/10.1016/j.fbio.2019.100421 es_ES
dc.description.references Pérez-Díaz IM, McFeeters RF (2010) Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts. J Food Sci Technol 75:204–208. https://doi.org/10.1111/j.1750-3841.2010.01587.x es_ES
dc.description.references Doan T, Babu D, Buescher R (2012) Inhibition of yeast in commercial pickle brines. J Food Res 3:1–7. https://doi.org/10.5539/jfr.v1n3p295 es_ES
dc.description.references Hondrodimou O, Kourkoutas Y, Panagou EZ (2011) Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiol 28:621–627. https://doi.org/10.1016/j.fm.2010.11.015 es_ES
dc.description.references Arroyo-López FN, Bautista-Gallego J, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A (2012) Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride. Int J Food Microbiol 155(3):257–262. https://doi.org/10.1016/j.ijfoodmicro.2012.02.007 es_ES
dc.description.references Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives es_ES
dc.description.references Pradas I, del Pino B, Peña F, Ortiz V, Moreno-Rojas JM, Fernández-Fernández A, García-Mesa JA (2012) The use of high hydrostatic pressure (HHP) treatments for table olives preservation. Innov Food Sci Emerg Technol 13:64–68. https://doi.org/10.1016/j.ifset.2011.10.011 es_ES
dc.description.references Peñas E, Frias J, Gomez R, Vidal-Valverde C (2010) High hydrostatic pressure can improve the microbial quality of sauerkraut during storage. Food Control 21:524–528. https://doi.org/10.1016/j.foodcont.2009.08.001 es_ES
dc.description.references Li L, Feng L, Yi J, Hua C, Chen F, Liao X, Wang Z, Hu X (2010) High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage. Int J Food Microbiol 142(1–2):180–184. https://doi.org/10.1016/j.ijfoodmicro.2010.06.020 es_ES
dc.description.references Pinto L, Baruzzi F, Cocolin L, Malfeito-Ferreira M (2020) Emerging technologies to control Brettanomyces spp. in wine: recent advances and future trends. Trends Food Sci Technol 99:88–100. https://doi.org/10.1016/j.tifs.2020.02.013 es_ES
dc.description.references Blaszak M, Nowak A, Lachowicz S, Migdal W, Ochmian I (2019) E-beam irradiation and ozonation as an alternative to the sulphuric method of wine preservation. Molecules 24(18):3406. https://doi.org/10.3390/molecules24183406 es_ES
dc.description.references Puértolas E, López N, Condón S, Raso J, Álvarez I (2009) Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 130(1):49–55. https://doi.org/10.1016/j.ijfoodmicro.2008.12.035 es_ES
dc.description.references Alexopoulos A, Plessas S, Kourkoutas Y, Stefanis C, Vavias S, Voidarou C, Mantzourani I, Bezirtzoglou E (2017) Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products. Int J Food Microbiol 246:5–11. https://doi.org/10.1016/j.ijfoodmicro.2017.01.018 es_ES
dc.description.references Alcántara-Zavala AE, Figueroa-Cárdenas JdD, Pérez-Robles JF, Arámbula-Villa G, Miranda-Castilleja DE (2021) Thermosonication as an alternative method for processing, extending the shelf life, and conserving the quality of pulque: a non-dairy Mexican fermented beverage. Ultrason Sonochem 70:105290. https://doi.org/10.1016/j.ultsonch.2020.105290 es_ES
dc.description.references Rios-Corripio G, Welti-Chanes J, Rodríguez-Martínez V, Guerrero-Beltrán JA (2020) Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. Innov Food Sci Emerg Technol 59:102249. https://doi.org/10.1016/j.ifset.2019.102249 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem