- -

A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats

Mostrar el registro completo del ítem

Tarazona, S.; Carmona, H.; Conesa, A.; Llansola, M.; Felipo, V. (2021). A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biology and Toxicology. 37(1):129-149. https://doi.org/10.1007/s10565-020-09572-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196895

Ficheros en el ítem

Metadatos del ítem

Título: A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats
Autor: Tarazona, Sonia Carmona, Héctor Conesa, Ana Llansola, Marta Felipo, Vicente
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. ...[+]
Palabras clave: Hyperammonemia , Multi-omics , Cerebellum , Signaling pathways , Neurotransmission , Immune system
Derechos de uso: Reserva de todos los derechos
Fuente:
Cell Biology and Toxicology. (issn: 0742-2091 )
DOI: 10.1007/s10565-020-09572-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10565-020-09572-y
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-82917-R/ES/BASES MOLECULARES DE LAS ALTERACIONES NEUROLOGICAS (COGNITIVAS Y MOTORAS) EN HIPERAMONEMIA Y ENCEFALOPATIA HEPATICA. LMPLICACIONES TERAPEUTICAS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F033/
Agradecimientos:
This work was supported by the Ministerio de Ciencia e Innovación of Spain (SAF2017-82917-R) and Consellería Educación Generalitat Valenciana (PROMETEOII/2014/033), co-funded with European Regional Development Funds (ERDF).[+]
Tipo: Artículo

References

Aller MA, Arias JL, Arias J. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension. J Transl Med. 2007;5:44 Review.

Aller MA, Arias N, Blanco-Rivero J, Arias JL, Arias J. Hepatic encephalopathy: sometimes more portal than hepatic. J Gastroenterol Hepatol. 2019;34(3):490–4. https://doi.org/10.1111/jgh.14514 Review.

Balzano T, Forteza J, Molina P, Giner J, Monzó A, Sancho-Jiménez J, et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons. Sci Rep. 2018a;8(1):3004. https://doi.org/10.1038/s41598-018-21399-6. [+]
Aller MA, Arias JL, Arias J. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension. J Transl Med. 2007;5:44 Review.

Aller MA, Arias N, Blanco-Rivero J, Arias JL, Arias J. Hepatic encephalopathy: sometimes more portal than hepatic. J Gastroenterol Hepatol. 2019;34(3):490–4. https://doi.org/10.1111/jgh.14514 Review.

Balzano T, Forteza J, Molina P, Giner J, Monzó A, Sancho-Jiménez J, et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons. Sci Rep. 2018a;8(1):3004. https://doi.org/10.1038/s41598-018-21399-6.

Balzano T, Forteza J, Borreda I, Molina P, Giner J, Leone P, et al. Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol. 2018b;77(9):837–45. https://doi.org/10.1093/jnen/nly061.

Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19(9):1161–5. https://doi.org/10.1038/nm.3303.

Boczek T, Lisek M, Ferenc B, Kowalski A, Stepinski D, Wiktorska M, et al. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations. PLoS One. 2014;9(7):e102352. https://doi.org/10.1371/journal.pone.0102352 eCollection 2014.

Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: a gatekeeper of neuronal calcium homeostasis in the brain. Cell Mol Neurobiol. 2018;38(5):981–94. https://doi.org/10.1007/s10571-018-0583-8.

Cabrera-Pastor A, Llansola M, Reznikov V, Boix J, Felipo V. Differential effects of chronic hyperammonemia on modulation of the glutamate-nitric oxide-cGMP pathway by metabotropic glutamate receptor 5 and low and high affinity AMPA receptors in cerebellum in vivo. Neurochem Int. 2012;61(1):63–71. https://doi.org/10.1016/j.neuint.2012.04.006.

Cabrera-Pastor A, Malaguarnera M, Taoro-Gonzalez L, Llansola M, Felipo V. Extracellular cGMP modulates learning biphasically by modulating glycine receptors, CaMKII and glutamate-nitric oxide-cGMP pathway. Sci Rep. 2016a;6:33124. https://doi.org/10.1038/srep33124.

Cabrera-Pastor A, Taoro-Gonzalez L, Felipo V. Hyperammonemia alters glycinergic neurotransmission and modulation of the glutamate-nitric oxide-cGMP pathway by extracellular glycine in cerebellum in vivo. J Neurochem. 2016b;137(4):539–48. https://doi.org/10.1111/jnc.13579.

Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun. 2018a;69:386–98. https://doi.org/10.1016/j.bbi.2017.12.013.

Cabrera-Pastor A, Taoro-González L, López-Merino E, Celma F, Llansola M, Felipo V. Chronic hyperammonemia alters in opposite ways membrane expression of GluA1 and GluA2 AMPA receptor subunits in cerebellum. Molecular mechanisms involved. Biochim Biophys Acta Mol basis Dis. 2018b;1864(1):286–95. https://doi.org/10.1016/j.bbadis.2017.10.031.

Cabrera-Pastor A, Arenas YM, Taoro-Gonzalez L, Montoliu C, Felipo V. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Neuropharmacology. 2019. https://doi.org/10.1016/j.neuropharm.2019.01.011.

Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018;47:214–77. https://doi.org/10.1016/j.arr.2018.07.004 Review.

Carvalho FB, Mello CF, Marisco PC, Tonello R, Girardi BA, Ferreira J, et al. Spermidine decreases Na+,K+-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol. 2012;684(1–3):79–86. https://doi.org/10.1016/j.ejphar.2012.03.046.

D’Mello C, Swain MG. Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun. 2014;35:9–20. https://doi.org/10.1016/j.bbi.2013.10.009.

De Filippi G, Baldwinson T, Sher E. Nicotinic receptor modulation of neurotransmitter release in the cerebellum. Prog Brain Res. 2005;148:307–20 Review.

Dhanda S, Sandhir R. Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy. Behav Brain Res. 2015;286:222–35. https://doi.org/10.1016/j.bbr.2015.01.042.

Dhanda S, Sandhir R. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol. 2018;55(5):3642–59. https://doi.org/10.1007/s12035-017-0521-7.

Dieudonné S. Serotonergic neuromodulation in the cerebellar cortex: cellular, synaptic, and molecular basis. Neuroscientist. 2001;7(3):207–19.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

Domeniconi M, Zampieri N, Spencer T, Hilaire M, Mellado W, Chao MV, et al. MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron. 2005;46(6):849–55. https://doi.org/10.1016/j.neuron.2005.05.029.

Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54(2):997–1007. https://doi.org/10.1007/s12035-016-9720-x.

Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H, et al. Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation. Front Cell Neurosci. 2019;13:191. https://doi.org/10.3389/fncel.2019.00191 eCollection 2019.

Duarte-Neves J, Gonçalves N, Cunha-Santos J, Simões AT, den Dunnen WF, Hirai H, et al. Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado-Joseph disease. Hum Mol Genet. 2015;24(19):5451–63. https://doi.org/10.1093/hmg/ddv271.

Erceg S, Monfort P, Hernández-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology. 2005;41(2):299–306.

Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat. Rev. Neurosci. 2013;14:851–8.

Felipo V, Miñana MD, Grisolía S. Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem. 1988;176(3):567–71.

Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M, et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis. 2012;27:51–8.

Felipo V, Urios A, Giménez-Garzó C, Cauli O, Andrés-Costa MJ, González O, et al. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World J Gastroenterol. 2014;20(33):11815–25. https://doi.org/10.3748/wjg.v20.i33.11815.

Fernández-Suárez D, Krapacher FA, Andersson A, Ibáñez CF, Kisiswa L. MAG induces apoptosis in cerebellar granule neurons through p75(NTR) demarcating granule layer/white matter boundary. Cell Death Dis. 2019;10(10):732. https://doi.org/10.1038/s41419-019-1970-x.

Fleming E, Hull C. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J Neurophysiol. 2019;121(1):105–14. https://doi.org/10.1152/jn.00492.2018.

Fogel WA, Andrzejewski W, Maslinski C. Brain histamine in rats with hepatic encephalopathy. J Neurochem. 1991;56(1):38–43.

Garside ML, Turner PR, Austen B, Strehler EE, Beesley PW, Empson RM. Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience. 2009;162(2):383–95. https://doi.org/10.1016/j.neuroscience.2009.04.059.

Gounko NV, Rybakin V, Kalicharan D, Siskova Z, Gramsbergen A, van der Want JJ. CRF and urocortin differentially modulate GluRdelta2 expression and distribution in parallel fiber-Purkinje cell synapses. Mol Cell Neurosci. 2005;30(4):513–22.

Hajieva P, Baeken MW, Moosmann B. The role of plasma membrane calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci Lett. 2018;663:29–38. https://doi.org/10.1016/j.neulet.2017.09.033 Review.

Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13(2):204–16.

Hermenegildo C, Montoliu C, Llansola M, Muñoz MD, Gaztelu JM, Miñana MD, et al. Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur J Neurosci. 1998;10(10):3201–9.

Hernández-de-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L, Furió-Tarí P, Pappas GJ Jr, et al. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018;46(W1):W503–9.

Hernández-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, et al. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation. 2016;13(1):83. https://doi.org/10.1186/s12974-016-0549-z.

Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev. 2016;71:484–505. https://doi.org/10.1016/j.neubiorev.2016.09.018.

Holm TH, Lykke-Hartmann K. Insights into the pathology of the α3 Na(+)/K(+)-ATPase ion pump in neurological disorders; lessons from animal models. Front Physiol. 2016;7:209. https://doi.org/10.3389/fphys.2016.00209 eCollection 2016. Review.

Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, refinement, and serotonergic modulation of cerebellar cortical circuits in normal development and in murine models of autism. Neural Plast. 2017;2017:6595740–14. https://doi.org/10.1155/2017/6595740. Review.

Huber W, Von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(suppl_1):S96–S104.

Jaarsma D, Ruigrok TJ, Caffé R, Cozzari C, Levey AI, Mugnaini E, et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res. 1997;114:67–96.

Kawashima T. The role of the serotonergic system in motor control. Neurosci Res. 2018;129:32–9. https://doi.org/10.1016/j.neures.2017.07.005 Review.

Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, et al. Mast cell activation in brain injury, stress, and post-traumatic stress disorder and Alzheimer’s disease pathogenesis. Front Neurosci. 2017;11:703. https://doi.org/10.3389/fnins.2017.00703 eCollection 2017.

Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology. 2014;15(2):R29.

Lei ZM, Rao CV. Neural actions of luteinizing hormone and human chorionic gonadotropin. Semin Reprod Med. 2001;19(1):103–9. https://doi.org/10.1055/s-2001-13917.

Li B, Zhu JN, Wang JJ. Histaminergic afferent system in the cerebellum: structure and function. Cerebellum Ataxias. 2014;1:5. https://doi.org/10.1186/2053-8871-1-5 eCollection 2014.

Libster AM, Title B, Yarom Y. Corticotropin-releasing factor increases Purkinje neuron excitability by modulating sodium, potassium, and Ih currents. J Neurophysiol. 2015;114(6):3339–50. https://doi.org/10.1152/jn.00745.2015.

Liddelow S, Hoyer D. Astrocytes: adhesion molecules and immunomodulation. Curr Drug Targets. 2016;17(16):1871–81 Review.

Llansola M, Erceg S, Felipo V. Chronic exposure to ammonia alters the modulation of phosphorylation of microtubule-associated protein 2 by metabotropic glutamate receptors 1 and 5 in cerebellar neurons in culture. Neuroscience. 2005;133(1):185–91. https://doi.org/10.1016/j.neuroscience.2005.02.008.

Llansola M, Piedrafita B, Rodrigo R, Montoliu C, Felipo V. Polychlorinated biphenyls PCB 153 and PCB 126 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms. Neurotox Res. 2009;16(2):97–105.

Llansola M, Ahabrach H, Errami M, Cabrera-Pastor A, Addaoudi K, Felipo V. Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats. Arch Biochem Biophys. 2013;536(2):164–70. https://doi.org/10.1016/j.abb.2013.01.009.

Lozeva V, MacDonald E, Belcheva A, Hippeläinen M, Kosunen H, Tuomisto L. Long-term effects of portacaval anastomosis on the 5-hydroxytryptamine, histamine, and catecholamine neurotransmitter systems in rat brain. J Neurochem. 1998;71(4):1450–6.

Lozeva V, Tuomisto L, Sola D, Plumed C, Hippeläinen M, Butterworth R. Increased density of brain histamine H(1) receptors in rats with portacaval anastomosis and in cirrhotic patients with chronic hepatic encephalopathy. Hepatology. 2001;33(6):1370–6.

Lozeva V, Tuomisto L, Tarhanen J, Butterworth RF. Increased concentrations of histamine and its metabolite, tele-methylhistamine and down-regulation of histamine H3 receptor sites in autopsied brain tissue from cirrhotic patients who died in hepatic coma. J Hepatol. 2003;39(4):522–7.

Lozeva V, Montgomery JA, Tuomisto L, Rocheleau B, Pannunzio M, Huet PM, et al. Increased brain serotonin turnover correlates with the degree of shunting and hyperammonemia in rats following variable portal vein stenosis. J Hepatol. 2004;40(5):742–8.

Maver A, Peterlin B. Positional integratomic approach in identification of genomic candidate regions for Parkinson’s disease. Bioinformatics. 2011;27(14):1971–8. https://doi.org/10.1093/bioinformatics/btr313.

Mavrakis AG, Havaki S, Marinos E, Chroni E, Konstantinou D. Occludin dislocation in brain capillary endothelium of rats with bile duct ligation induced cholestasis. Neurosci Lett. 2012;528(2):180–4. https://doi.org/10.1016/j.neulet.2012.08.066.

Mensali N, Grenov A, Pati NB, Dillard P, Myhre MR, Gaudernack G, et al. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncoimmunology. 2019;8(3):1558663. https://doi.org/10.1080/2162402X.2018.1558663 eCollection 2019.

Miyata M, Mandai K, Maruo T, Sato J, Shiotani H, Kaito A, et al. Localization of nectin-2δ at perivascular astrocytic endfoot processes and degeneration of astrocytes and neurons in nectin-2 knockout mouse brain. Brain Res. 2016;1649(Pt A):90–101. https://doi.org/10.1016/j.brainres.2016.08.023.

Montoliu C, Piedrafita B, Serra MA, del Olmo JA, Urios A, Rodrigo JM, et al. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol. 2009;43(3):272–9. https://doi.org/10.1097/MCG.0b013e31815e7f58.

Munhoz CD, Kawamoto EM, de Sá LL, Lepsch LB, Glezer I, Marcourakis T, et al. Glutamate modulates sodium-potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum. Cell Biochem Funct. 2005;23(2):115–23. https://doi.org/10.1002/cbf.1217.

Niaz N, Guvenc G, Altinbas B, Berk Toker M, Aydin B, Udum-Kucuksen D, et al. Intracerebroventricular injection of histamine induces the hypothalamic-pituitary-gonadal axis activation in male rats. Brain Res. 2018;1699:150–7. https://doi.org/10.1016/j.brainres.2018.08.020.

Nori A, Villa A, Podini P, Witcher DR, Volpe P. Intracellular Ca2+ stores of rat cerebellum: heterogeneity within and distinction from endoplasmic reticulum. Biochem J. 1993;291(Pt 1):199–204.

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45.

Padányi R, Pászty K, Hegedűs L, Varga K, Papp B, Penniston JT, et al. Multifaceted plasma membrane Ca(2+) pumps: from structure to intracellular Ca(2+) handling and cancer. Biochim Biophys Acta. 2016;1863(6 Pt B):1351–63. https://doi.org/10.1016/j.bbamcr.2015.12.011.

Rao VL, Qureshi IA, Butterworth RF. Activities of monoamine oxidase-A and -B are altered in the brains of congenitally hyperammonemic sparse-fur (spf) mice. Neurosci Lett. 1994;170(1):27–30.

Rettori V, Fernandez-Solari J, Mohn C, Zorrilla Zubilete MA, de la Cal C, Prestifilippo JP, et al. Nitric oxide at the crossroad of immunoneuroendocrine interactions. Ann N Y Acad Sci. 2009;1153:35–47. https://doi.org/10.1111/j.1749-6632.2008.03968.x.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo JM, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139(2):675–84. https://doi.org/10.1053/j.gastro.2010.03.040.

Scavone C, Munhoz CD, Kawamoto EM, Glezer I, de Sá LL, Marcourakis T, et al. Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity. Neurobiol Aging. 2005;26(6):907–16. https://doi.org/10.1016/j.neurobiolaging.2004.08.013.

Schmolesky MT, De Ruiter MM, De Zeeuw CI, Hansel C. The neuropeptide corticotropin-releasing factor regulates excitatory transmission and plasticity at the climbing fibre-Purkinje cell synapse. Eur J Neurosci. 2007;25(5):1460–6.

Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44(2–3):103–16 Review.

Sergeeva OA, Chepkova AN, Görg B, Rodrigues Almeida F, Bidmon HJ, Haas HL, et al. Histamine-induced plasticity and gene expression in corticostriatal pathway under hyperammonemia. CNS Neurosci Ther. 2020;26(3):355–66. https://doi.org/10.1111/cns.13223.

Shawcross DL, Davies NA, William R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40:247–54.

Silva-Marques B, Gianlorenço AC, Mattioli R. Intracerebellar vermis histamine facilitates memory consolidation in the elevated T maze model. Neurosci Lett. 2016;620:33–7. https://doi.org/10.1016/j.neulet.2016.03.010.

Silwedel C, Förster C. Differential susceptibility of cerebral and cerebellar murine brain microvascular endothelial cells to loss of barrier properties in response to inflammatory stimuli. J Neuroimmunol. 2006;179(1–2):37–45.

Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. https://doi.org/10.3389/fncel.2018.00072 eCollection 2018. Review.

Smilde AK, van der Werf MJ, Bijlsma S, van der Werffvan der Vat BJC, Jellema RH. Fusion of mass spectrometry-based metabolomics data. Anal Chem. 2005;77(20):6729–36.

Spahr L, Coeytaux A, Giostra E, Hadengue A, Annoni JM. Histamine H1 blocker hydroxyzine improves sleep in patients with cirrhosis and minimal hepatic encephalopathy: a randomized controlled pilot trial. Am J Gastroenterol. 2007;102(4):744–53.

Spong KE, Rodríguez EC, Robertson RM. Spreading depolarization in the brain of Drosophila is induced by inhibition of the Na+/K+-ATPase and mitigated by a decrease in activity of protein kinase G. J Neurophysiol. 2016;116(3):1152–60. https://doi.org/10.1152/jn.00353.2016.

Stone EA, Quartermain D, Lin Y, Lehmann ML. Central alpha1-adrenergic system in behavioral activity and depression. Biochem Pharmacol. 2007;73(8):1063–75.

Takei A, Hamada T, Yabe I, Sasaki H. Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum. 2005;4(3):211–5 Review.

Tao J, Zhang Y, Huang H, Jiang X. Activation of corticotropin-releasing factor 2 receptor inhibits Purkinje neuron P-type calcium currents via G(o)alpha-dependent PKC epsilon pathway. Cell Signal. 2009;21(9):1436–43. https://doi.org/10.1016/j.cellsig.2009.05.002.

Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43(21):e140.

Tasaki S, Gaiteri C, Mostafavi S, Yu L, Wang Y, De Jager PL, et al. Multi-omic directed networks describe features of gene regulation in aged brains and expand the set of genes driving cognitive decline. Front Genet. 2018;9:294. https://doi.org/10.3389/fgene.2018.00294 eCollection 2018.

Trouillas P. The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci. 1993;20(Suppl 3):S78–82 Review.

Tuomisto L, Lozeva V, Valjakka A, Lecklin A. Modifying effects of histamine on circadian rhythms and neuronal excitability. Behav Brain Res. 2001;124(2):129–35 Review.

UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699.

Vairappan B, Sundhar M, Srinivas BH. Resveratrol restores neuronal tight junction proteins through correction of ammonia and inflammation in CCl4-induced cirrhotic mice. Mol Neurobiol. 2019;56(7):4718–29. https://doi.org/10.1007/s12035-018-1389-x.

van Buuren, S., Groothuis-Oudshoorn, K. Mice: multivariate imputation by chained equations in R. Journal of statistical software. 2010;45 (3):1–68.

Vilalta A, Brown GC. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease. FEBS J. 2018;285(19):3566–75. https://doi.org/10.1111/febs.14323 Review.

Wang Y, Chen ZP, Zhuang QX, Zhang XY, Li HZ, Wang JJ, et al. Role of corticotropin-releasing factor in cerebellar motor control and ataxia. Curr Biol. 2017;27(17):2661–2669.e5. https://doi.org/10.1016/j.cub.2017.07.035.

Wecker L, Engberg ME, Philpot RM, Lambert CS, Kang CW, Antilla JC, et al. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology. 2013;73:75–86. https://doi.org/10.1016/j.neuropharm.2013.05.016.

Yue T, Li B, Gu L, Huang J, Verkhratsky A, Peng L. Ammonium induced dysfunction of 5-HT2B receptor in astrocytes. Neurochem Int. 2019;129:104479. https://doi.org/10.1016/j.neuint.2019.104479.

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61.

Zhang Q, Scholz PM, He Y, Tse J, Weiss HR. Cyclic GMP signaling and regulation of SERCA activity during cardiac myocyte contraction. Cell Calcium. 2005;37(3):259–66. https://doi.org/10.1016/j.ceca.2004.10.007.

Zhang J, Zhuang QX, Li B, Wu GY, Yung WH, Zhu JN, et al. Selective modulation of histaminergic inputs on projection neurons of cerebellum rapidly promotes motor coordination via HCN channels. Mol Neurobiol. 2016a;53(2):1386–401. https://doi.org/10.1007/s12035-015-9096-3.

Zhang X, Wang Y, Dong H, Xu Y, Zhang S. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016b;38(4):1520–31. https://doi.org/10.1159/000443093.

Zhang X, Dong H, Li N, Zhang S, Sun J, Zhang S, et al. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation. 2016c;13(1):127. https://doi.org/10.1186/s12974-016-0592-9.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem