- -

A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tarazona, Sonia es_ES
dc.contributor.author Carmona, Héctor es_ES
dc.contributor.author Conesa, Ana es_ES
dc.contributor.author Llansola, Marta es_ES
dc.contributor.author Felipo, Vicente es_ES
dc.date.accessioned 2023-09-21T18:04:37Z
dc.date.available 2023-09-21T18:04:37Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 0742-2091 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196895
dc.description.abstract [EN] Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Ciencia e Innovación of Spain (SAF2017-82917-R) and Consellería Educación Generalitat Valenciana (PROMETEOII/2014/033), co-funded with European Regional Development Funds (ERDF). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Cell Biology and Toxicology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyperammonemia es_ES
dc.subject Multi-omics es_ES
dc.subject Cerebellum es_ES
dc.subject Signaling pathways es_ES
dc.subject Neurotransmission es_ES
dc.subject Immune system es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10565-020-09572-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-82917-R/ES/BASES MOLECULARES DE LAS ALTERACIONES NEUROLOGICAS (COGNITIVAS Y MOTORAS) EN HIPERAMONEMIA Y ENCEFALOPATIA HEPATICA. LMPLICACIONES TERAPEUTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F033/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Tarazona, S.; Carmona, H.; Conesa, A.; Llansola, M.; Felipo, V. (2021). A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biology and Toxicology. 37(1):129-149. https://doi.org/10.1007/s10565-020-09572-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10565-020-09572-y es_ES
dc.description.upvformatpinicio 129 es_ES
dc.description.upvformatpfin 149 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33404927 es_ES
dc.relation.pasarela S\425433 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Aller MA, Arias JL, Arias J. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension. J Transl Med. 2007;5:44 Review. es_ES
dc.description.references Aller MA, Arias N, Blanco-Rivero J, Arias JL, Arias J. Hepatic encephalopathy: sometimes more portal than hepatic. J Gastroenterol Hepatol. 2019;34(3):490–4. https://doi.org/10.1111/jgh.14514 Review. es_ES
dc.description.references Balzano T, Forteza J, Molina P, Giner J, Monzó A, Sancho-Jiménez J, et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons. Sci Rep. 2018a;8(1):3004. https://doi.org/10.1038/s41598-018-21399-6. es_ES
dc.description.references Balzano T, Forteza J, Borreda I, Molina P, Giner J, Leone P, et al. Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol. 2018b;77(9):837–45. https://doi.org/10.1093/jnen/nly061. es_ES
dc.description.references Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19(9):1161–5. https://doi.org/10.1038/nm.3303. es_ES
dc.description.references Boczek T, Lisek M, Ferenc B, Kowalski A, Stepinski D, Wiktorska M, et al. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations. PLoS One. 2014;9(7):e102352. https://doi.org/10.1371/journal.pone.0102352 eCollection 2014. es_ES
dc.description.references Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: a gatekeeper of neuronal calcium homeostasis in the brain. Cell Mol Neurobiol. 2018;38(5):981–94. https://doi.org/10.1007/s10571-018-0583-8. es_ES
dc.description.references Cabrera-Pastor A, Llansola M, Reznikov V, Boix J, Felipo V. Differential effects of chronic hyperammonemia on modulation of the glutamate-nitric oxide-cGMP pathway by metabotropic glutamate receptor 5 and low and high affinity AMPA receptors in cerebellum in vivo. Neurochem Int. 2012;61(1):63–71. https://doi.org/10.1016/j.neuint.2012.04.006. es_ES
dc.description.references Cabrera-Pastor A, Malaguarnera M, Taoro-Gonzalez L, Llansola M, Felipo V. Extracellular cGMP modulates learning biphasically by modulating glycine receptors, CaMKII and glutamate-nitric oxide-cGMP pathway. Sci Rep. 2016a;6:33124. https://doi.org/10.1038/srep33124. es_ES
dc.description.references Cabrera-Pastor A, Taoro-Gonzalez L, Felipo V. Hyperammonemia alters glycinergic neurotransmission and modulation of the glutamate-nitric oxide-cGMP pathway by extracellular glycine in cerebellum in vivo. J Neurochem. 2016b;137(4):539–48. https://doi.org/10.1111/jnc.13579. es_ES
dc.description.references Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun. 2018a;69:386–98. https://doi.org/10.1016/j.bbi.2017.12.013. es_ES
dc.description.references Cabrera-Pastor A, Taoro-González L, López-Merino E, Celma F, Llansola M, Felipo V. Chronic hyperammonemia alters in opposite ways membrane expression of GluA1 and GluA2 AMPA receptor subunits in cerebellum. Molecular mechanisms involved. Biochim Biophys Acta Mol basis Dis. 2018b;1864(1):286–95. https://doi.org/10.1016/j.bbadis.2017.10.031. es_ES
dc.description.references Cabrera-Pastor A, Arenas YM, Taoro-Gonzalez L, Montoliu C, Felipo V. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Neuropharmacology. 2019. https://doi.org/10.1016/j.neuropharm.2019.01.011. es_ES
dc.description.references Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018;47:214–77. https://doi.org/10.1016/j.arr.2018.07.004 Review. es_ES
dc.description.references Carvalho FB, Mello CF, Marisco PC, Tonello R, Girardi BA, Ferreira J, et al. Spermidine decreases Na+,K+-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol. 2012;684(1–3):79–86. https://doi.org/10.1016/j.ejphar.2012.03.046. es_ES
dc.description.references D’Mello C, Swain MG. Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun. 2014;35:9–20. https://doi.org/10.1016/j.bbi.2013.10.009. es_ES
dc.description.references De Filippi G, Baldwinson T, Sher E. Nicotinic receptor modulation of neurotransmitter release in the cerebellum. Prog Brain Res. 2005;148:307–20 Review. es_ES
dc.description.references Dhanda S, Sandhir R. Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy. Behav Brain Res. 2015;286:222–35. https://doi.org/10.1016/j.bbr.2015.01.042. es_ES
dc.description.references Dhanda S, Sandhir R. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol. 2018;55(5):3642–59. https://doi.org/10.1007/s12035-017-0521-7. es_ES
dc.description.references Dieudonné S. Serotonergic neuromodulation in the cerebellar cortex: cellular, synaptic, and molecular basis. Neuroscientist. 2001;7(3):207–19. es_ES
dc.description.references Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. es_ES
dc.description.references Domeniconi M, Zampieri N, Spencer T, Hilaire M, Mellado W, Chao MV, et al. MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron. 2005;46(6):849–55. https://doi.org/10.1016/j.neuron.2005.05.029. es_ES
dc.description.references Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54(2):997–1007. https://doi.org/10.1007/s12035-016-9720-x. es_ES
dc.description.references Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H, et al. Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation. Front Cell Neurosci. 2019;13:191. https://doi.org/10.3389/fncel.2019.00191 eCollection 2019. es_ES
dc.description.references Duarte-Neves J, Gonçalves N, Cunha-Santos J, Simões AT, den Dunnen WF, Hirai H, et al. Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado-Joseph disease. Hum Mol Genet. 2015;24(19):5451–63. https://doi.org/10.1093/hmg/ddv271. es_ES
dc.description.references Erceg S, Monfort P, Hernández-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology. 2005;41(2):299–306. es_ES
dc.description.references Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat. Rev. Neurosci. 2013;14:851–8. es_ES
dc.description.references Felipo V, Miñana MD, Grisolía S. Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem. 1988;176(3):567–71. es_ES
dc.description.references Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M, et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis. 2012;27:51–8. es_ES
dc.description.references Felipo V, Urios A, Giménez-Garzó C, Cauli O, Andrés-Costa MJ, González O, et al. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World J Gastroenterol. 2014;20(33):11815–25. https://doi.org/10.3748/wjg.v20.i33.11815. es_ES
dc.description.references Fernández-Suárez D, Krapacher FA, Andersson A, Ibáñez CF, Kisiswa L. MAG induces apoptosis in cerebellar granule neurons through p75(NTR) demarcating granule layer/white matter boundary. Cell Death Dis. 2019;10(10):732. https://doi.org/10.1038/s41419-019-1970-x. es_ES
dc.description.references Fleming E, Hull C. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J Neurophysiol. 2019;121(1):105–14. https://doi.org/10.1152/jn.00492.2018. es_ES
dc.description.references Fogel WA, Andrzejewski W, Maslinski C. Brain histamine in rats with hepatic encephalopathy. J Neurochem. 1991;56(1):38–43. es_ES
dc.description.references Garside ML, Turner PR, Austen B, Strehler EE, Beesley PW, Empson RM. Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience. 2009;162(2):383–95. https://doi.org/10.1016/j.neuroscience.2009.04.059. es_ES
dc.description.references Gounko NV, Rybakin V, Kalicharan D, Siskova Z, Gramsbergen A, van der Want JJ. CRF and urocortin differentially modulate GluRdelta2 expression and distribution in parallel fiber-Purkinje cell synapses. Mol Cell Neurosci. 2005;30(4):513–22. es_ES
dc.description.references Hajieva P, Baeken MW, Moosmann B. The role of plasma membrane calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci Lett. 2018;663:29–38. https://doi.org/10.1016/j.neulet.2017.09.033 Review. es_ES
dc.description.references Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13(2):204–16. es_ES
dc.description.references Hermenegildo C, Montoliu C, Llansola M, Muñoz MD, Gaztelu JM, Miñana MD, et al. Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur J Neurosci. 1998;10(10):3201–9. es_ES
dc.description.references Hernández-de-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L, Furió-Tarí P, Pappas GJ Jr, et al. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018;46(W1):W503–9. es_ES
dc.description.references Hernández-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, et al. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation. 2016;13(1):83. https://doi.org/10.1186/s12974-016-0549-z. es_ES
dc.description.references Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev. 2016;71:484–505. https://doi.org/10.1016/j.neubiorev.2016.09.018. es_ES
dc.description.references Holm TH, Lykke-Hartmann K. Insights into the pathology of the α3 Na(+)/K(+)-ATPase ion pump in neurological disorders; lessons from animal models. Front Physiol. 2016;7:209. https://doi.org/10.3389/fphys.2016.00209 eCollection 2016. Review. es_ES
dc.description.references Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, refinement, and serotonergic modulation of cerebellar cortical circuits in normal development and in murine models of autism. Neural Plast. 2017;2017:6595740–14. https://doi.org/10.1155/2017/6595740. Review. es_ES
dc.description.references Huber W, Von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002;18(suppl_1):S96–S104. es_ES
dc.description.references Jaarsma D, Ruigrok TJ, Caffé R, Cozzari C, Levey AI, Mugnaini E, et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res. 1997;114:67–96. es_ES
dc.description.references Kawashima T. The role of the serotonergic system in motor control. Neurosci Res. 2018;129:32–9. https://doi.org/10.1016/j.neures.2017.07.005 Review. es_ES
dc.description.references Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, et al. Mast cell activation in brain injury, stress, and post-traumatic stress disorder and Alzheimer’s disease pathogenesis. Front Neurosci. 2017;11:703. https://doi.org/10.3389/fnins.2017.00703 eCollection 2017. es_ES
dc.description.references Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology. 2014;15(2):R29. es_ES
dc.description.references Lei ZM, Rao CV. Neural actions of luteinizing hormone and human chorionic gonadotropin. Semin Reprod Med. 2001;19(1):103–9. https://doi.org/10.1055/s-2001-13917. es_ES
dc.description.references Li B, Zhu JN, Wang JJ. Histaminergic afferent system in the cerebellum: structure and function. Cerebellum Ataxias. 2014;1:5. https://doi.org/10.1186/2053-8871-1-5 eCollection 2014. es_ES
dc.description.references Libster AM, Title B, Yarom Y. Corticotropin-releasing factor increases Purkinje neuron excitability by modulating sodium, potassium, and Ih currents. J Neurophysiol. 2015;114(6):3339–50. https://doi.org/10.1152/jn.00745.2015. es_ES
dc.description.references Liddelow S, Hoyer D. Astrocytes: adhesion molecules and immunomodulation. Curr Drug Targets. 2016;17(16):1871–81 Review. es_ES
dc.description.references Llansola M, Erceg S, Felipo V. Chronic exposure to ammonia alters the modulation of phosphorylation of microtubule-associated protein 2 by metabotropic glutamate receptors 1 and 5 in cerebellar neurons in culture. Neuroscience. 2005;133(1):185–91. https://doi.org/10.1016/j.neuroscience.2005.02.008. es_ES
dc.description.references Llansola M, Piedrafita B, Rodrigo R, Montoliu C, Felipo V. Polychlorinated biphenyls PCB 153 and PCB 126 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms. Neurotox Res. 2009;16(2):97–105. es_ES
dc.description.references Llansola M, Ahabrach H, Errami M, Cabrera-Pastor A, Addaoudi K, Felipo V. Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats. Arch Biochem Biophys. 2013;536(2):164–70. https://doi.org/10.1016/j.abb.2013.01.009. es_ES
dc.description.references Lozeva V, MacDonald E, Belcheva A, Hippeläinen M, Kosunen H, Tuomisto L. Long-term effects of portacaval anastomosis on the 5-hydroxytryptamine, histamine, and catecholamine neurotransmitter systems in rat brain. J Neurochem. 1998;71(4):1450–6. es_ES
dc.description.references Lozeva V, Tuomisto L, Sola D, Plumed C, Hippeläinen M, Butterworth R. Increased density of brain histamine H(1) receptors in rats with portacaval anastomosis and in cirrhotic patients with chronic hepatic encephalopathy. Hepatology. 2001;33(6):1370–6. es_ES
dc.description.references Lozeva V, Tuomisto L, Tarhanen J, Butterworth RF. Increased concentrations of histamine and its metabolite, tele-methylhistamine and down-regulation of histamine H3 receptor sites in autopsied brain tissue from cirrhotic patients who died in hepatic coma. J Hepatol. 2003;39(4):522–7. es_ES
dc.description.references Lozeva V, Montgomery JA, Tuomisto L, Rocheleau B, Pannunzio M, Huet PM, et al. Increased brain serotonin turnover correlates with the degree of shunting and hyperammonemia in rats following variable portal vein stenosis. J Hepatol. 2004;40(5):742–8. es_ES
dc.description.references Maver A, Peterlin B. Positional integratomic approach in identification of genomic candidate regions for Parkinson’s disease. Bioinformatics. 2011;27(14):1971–8. https://doi.org/10.1093/bioinformatics/btr313. es_ES
dc.description.references Mavrakis AG, Havaki S, Marinos E, Chroni E, Konstantinou D. Occludin dislocation in brain capillary endothelium of rats with bile duct ligation induced cholestasis. Neurosci Lett. 2012;528(2):180–4. https://doi.org/10.1016/j.neulet.2012.08.066. es_ES
dc.description.references Mensali N, Grenov A, Pati NB, Dillard P, Myhre MR, Gaudernack G, et al. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncoimmunology. 2019;8(3):1558663. https://doi.org/10.1080/2162402X.2018.1558663 eCollection 2019. es_ES
dc.description.references Miyata M, Mandai K, Maruo T, Sato J, Shiotani H, Kaito A, et al. Localization of nectin-2δ at perivascular astrocytic endfoot processes and degeneration of astrocytes and neurons in nectin-2 knockout mouse brain. Brain Res. 2016;1649(Pt A):90–101. https://doi.org/10.1016/j.brainres.2016.08.023. es_ES
dc.description.references Montoliu C, Piedrafita B, Serra MA, del Olmo JA, Urios A, Rodrigo JM, et al. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol. 2009;43(3):272–9. https://doi.org/10.1097/MCG.0b013e31815e7f58. es_ES
dc.description.references Munhoz CD, Kawamoto EM, de Sá LL, Lepsch LB, Glezer I, Marcourakis T, et al. Glutamate modulates sodium-potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum. Cell Biochem Funct. 2005;23(2):115–23. https://doi.org/10.1002/cbf.1217. es_ES
dc.description.references Niaz N, Guvenc G, Altinbas B, Berk Toker M, Aydin B, Udum-Kucuksen D, et al. Intracerebroventricular injection of histamine induces the hypothalamic-pituitary-gonadal axis activation in male rats. Brain Res. 2018;1699:150–7. https://doi.org/10.1016/j.brainres.2018.08.020. es_ES
dc.description.references Nori A, Villa A, Podini P, Witcher DR, Volpe P. Intracellular Ca2+ stores of rat cerebellum: heterogeneity within and distinction from endoplasmic reticulum. Biochem J. 1993;291(Pt 1):199–204. es_ES
dc.description.references O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45. es_ES
dc.description.references Padányi R, Pászty K, Hegedűs L, Varga K, Papp B, Penniston JT, et al. Multifaceted plasma membrane Ca(2+) pumps: from structure to intracellular Ca(2+) handling and cancer. Biochim Biophys Acta. 2016;1863(6 Pt B):1351–63. https://doi.org/10.1016/j.bbamcr.2015.12.011. es_ES
dc.description.references Rao VL, Qureshi IA, Butterworth RF. Activities of monoamine oxidase-A and -B are altered in the brains of congenitally hyperammonemic sparse-fur (spf) mice. Neurosci Lett. 1994;170(1):27–30. es_ES
dc.description.references Rettori V, Fernandez-Solari J, Mohn C, Zorrilla Zubilete MA, de la Cal C, Prestifilippo JP, et al. Nitric oxide at the crossroad of immunoneuroendocrine interactions. Ann N Y Acad Sci. 2009;1153:35–47. https://doi.org/10.1111/j.1749-6632.2008.03968.x. es_ES
dc.description.references Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. es_ES
dc.description.references Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo JM, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139(2):675–84. https://doi.org/10.1053/j.gastro.2010.03.040. es_ES
dc.description.references Scavone C, Munhoz CD, Kawamoto EM, Glezer I, de Sá LL, Marcourakis T, et al. Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity. Neurobiol Aging. 2005;26(6):907–16. https://doi.org/10.1016/j.neurobiolaging.2004.08.013. es_ES
dc.description.references Schmolesky MT, De Ruiter MM, De Zeeuw CI, Hansel C. The neuropeptide corticotropin-releasing factor regulates excitatory transmission and plasticity at the climbing fibre-Purkinje cell synapse. Eur J Neurosci. 2007;25(5):1460–6. es_ES
dc.description.references Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44(2–3):103–16 Review. es_ES
dc.description.references Sergeeva OA, Chepkova AN, Görg B, Rodrigues Almeida F, Bidmon HJ, Haas HL, et al. Histamine-induced plasticity and gene expression in corticostriatal pathway under hyperammonemia. CNS Neurosci Ther. 2020;26(3):355–66. https://doi.org/10.1111/cns.13223. es_ES
dc.description.references Shawcross DL, Davies NA, William R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40:247–54. es_ES
dc.description.references Silva-Marques B, Gianlorenço AC, Mattioli R. Intracerebellar vermis histamine facilitates memory consolidation in the elevated T maze model. Neurosci Lett. 2016;620:33–7. https://doi.org/10.1016/j.neulet.2016.03.010. es_ES
dc.description.references Silwedel C, Förster C. Differential susceptibility of cerebral and cerebellar murine brain microvascular endothelial cells to loss of barrier properties in response to inflammatory stimuli. J Neuroimmunol. 2006;179(1–2):37–45. es_ES
dc.description.references Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. https://doi.org/10.3389/fncel.2018.00072 eCollection 2018. Review. es_ES
dc.description.references Smilde AK, van der Werf MJ, Bijlsma S, van der Werffvan der Vat BJC, Jellema RH. Fusion of mass spectrometry-based metabolomics data. Anal Chem. 2005;77(20):6729–36. es_ES
dc.description.references Spahr L, Coeytaux A, Giostra E, Hadengue A, Annoni JM. Histamine H1 blocker hydroxyzine improves sleep in patients with cirrhosis and minimal hepatic encephalopathy: a randomized controlled pilot trial. Am J Gastroenterol. 2007;102(4):744–53. es_ES
dc.description.references Spong KE, Rodríguez EC, Robertson RM. Spreading depolarization in the brain of Drosophila is induced by inhibition of the Na+/K+-ATPase and mitigated by a decrease in activity of protein kinase G. J Neurophysiol. 2016;116(3):1152–60. https://doi.org/10.1152/jn.00353.2016. es_ES
dc.description.references Stone EA, Quartermain D, Lin Y, Lehmann ML. Central alpha1-adrenergic system in behavioral activity and depression. Biochem Pharmacol. 2007;73(8):1063–75. es_ES
dc.description.references Takei A, Hamada T, Yabe I, Sasaki H. Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum. 2005;4(3):211–5 Review. es_ES
dc.description.references Tao J, Zhang Y, Huang H, Jiang X. Activation of corticotropin-releasing factor 2 receptor inhibits Purkinje neuron P-type calcium currents via G(o)alpha-dependent PKC epsilon pathway. Cell Signal. 2009;21(9):1436–43. https://doi.org/10.1016/j.cellsig.2009.05.002. es_ES
dc.description.references Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43(21):e140. es_ES
dc.description.references Tasaki S, Gaiteri C, Mostafavi S, Yu L, Wang Y, De Jager PL, et al. Multi-omic directed networks describe features of gene regulation in aged brains and expand the set of genes driving cognitive decline. Front Genet. 2018;9:294. https://doi.org/10.3389/fgene.2018.00294 eCollection 2018. es_ES
dc.description.references Trouillas P. The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci. 1993;20(Suppl 3):S78–82 Review. es_ES
dc.description.references Tuomisto L, Lozeva V, Valjakka A, Lecklin A. Modifying effects of histamine on circadian rhythms and neuronal excitability. Behav Brain Res. 2001;124(2):129–35 Review. es_ES
dc.description.references UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699. es_ES
dc.description.references Vairappan B, Sundhar M, Srinivas BH. Resveratrol restores neuronal tight junction proteins through correction of ammonia and inflammation in CCl4-induced cirrhotic mice. Mol Neurobiol. 2019;56(7):4718–29. https://doi.org/10.1007/s12035-018-1389-x. es_ES
dc.description.references van Buuren, S., Groothuis-Oudshoorn, K. Mice: multivariate imputation by chained equations in R. Journal of statistical software. 2010;45 (3):1–68. es_ES
dc.description.references Vilalta A, Brown GC. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease. FEBS J. 2018;285(19):3566–75. https://doi.org/10.1111/febs.14323 Review. es_ES
dc.description.references Wang Y, Chen ZP, Zhuang QX, Zhang XY, Li HZ, Wang JJ, et al. Role of corticotropin-releasing factor in cerebellar motor control and ataxia. Curr Biol. 2017;27(17):2661–2669.e5. https://doi.org/10.1016/j.cub.2017.07.035. es_ES
dc.description.references Wecker L, Engberg ME, Philpot RM, Lambert CS, Kang CW, Antilla JC, et al. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology. 2013;73:75–86. https://doi.org/10.1016/j.neuropharm.2013.05.016. es_ES
dc.description.references Yue T, Li B, Gu L, Huang J, Verkhratsky A, Peng L. Ammonium induced dysfunction of 5-HT2B receptor in astrocytes. Neurochem Int. 2019;129:104479. https://doi.org/10.1016/j.neuint.2019.104479. es_ES
dc.description.references Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61. es_ES
dc.description.references Zhang Q, Scholz PM, He Y, Tse J, Weiss HR. Cyclic GMP signaling and regulation of SERCA activity during cardiac myocyte contraction. Cell Calcium. 2005;37(3):259–66. https://doi.org/10.1016/j.ceca.2004.10.007. es_ES
dc.description.references Zhang J, Zhuang QX, Li B, Wu GY, Yung WH, Zhu JN, et al. Selective modulation of histaminergic inputs on projection neurons of cerebellum rapidly promotes motor coordination via HCN channels. Mol Neurobiol. 2016a;53(2):1386–401. https://doi.org/10.1007/s12035-015-9096-3. es_ES
dc.description.references Zhang X, Wang Y, Dong H, Xu Y, Zhang S. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016b;38(4):1520–31. https://doi.org/10.1159/000443093. es_ES
dc.description.references Zhang X, Dong H, Li N, Zhang S, Sun J, Zhang S, et al. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation. 2016c;13(1):127. https://doi.org/10.1186/s12974-016-0592-9. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem