Arkhangel’skiĭ, A.V.: Topological function spaces. Math. and its Applications, vol. 78. Kluwer Academic Publishers, Dordrecht, Boston, London (1992)
Banach, S.: Théorie des oprérations linéaires. PWN, Warsaw (1932)
Banakh, T.: On Topological classification of normed spaces endowed with the weak topology of the topology of compact convergence. In: Banakh, T. (ed.) General Topology in Banach Spaces, pp. 171–178 . Nova Sci. Publ. (2001). arXiv:1908.09115v1
[+]
Arkhangel’skiĭ, A.V.: Topological function spaces. Math. and its Applications, vol. 78. Kluwer Academic Publishers, Dordrecht, Boston, London (1992)
Banach, S.: Théorie des oprérations linéaires. PWN, Warsaw (1932)
Banakh, T.: On Topological classification of normed spaces endowed with the weak topology of the topology of compact convergence. In: Banakh, T. (ed.) General Topology in Banach Spaces, pp. 171–178 . Nova Sci. Publ. (2001). arXiv:1908.09115v1
Banakh, T.: $$k$$-scattered spaces (2020). arXiv:1904.08969v1
Banakh, T., Kakol, J., Śliwa, W.: Josefson–Nissenzweig property for $$C_{p}$$-spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3015–3030 (2019). https://doi.org/10.1007/s13398-019-00667-8
Bessaga, Cz., Pełczyński, A.: Spaces of continuous functions (IV) (On isomorphical classification of spaces of continuous functions). Studia Math. 73, 53–62 (1960)
Bierstedt, D., Bonet, J.: Density conditions in Fréchet and $$(DF)$$-spaces. Rev. Mat. Complut. 2, 59–75 (1989)
Bierstedt, D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. RACSAM. 97, 159–188 (2003)
Edgar, G.A., Wheller, R.F.: Topological properies of Banach spaces. Pac. J. Math. 115, 317–350 (1984)
Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)
Fabian, M., Habala, P., Hàjek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. CMS Books Math./Ouvrages Math, SMC (2001)
Ferrando, J.C., Ka̧kol, J.: On precompact sets in spaces $$C_{c}\left( X\right)$$. Georg. Math. J. 20, 247–254 (2013)
Ferrando, J.C., Ka̧kol, J.: Metrizable Bounded Sets in $$C(X)$$ Spaces and Distinguished $$C_p(X)$$ Spaces. J. Convex Anal. 26, 1337–1346 (2019)
Ferrando, J.C., Gabriyelyan, S., Ka̧kol, J.: Bounded sets structure of $$C_p(X)$$ and quasi-(DF)-spaces. Math. Nachr. 292, 2602–2618 (2019)
Ferrando, J.C.: Descriptive topology for analysts. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), 34 (2020). https://doi.org/10.1007/s13398-020-00837-z(Paper No. 107)
Ferrando, J.C., Kakol, J., Leiderman, A., Saxon, S.: Distinguished Cp(X) spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(1), 18 (2021). https://doi.org/10.1007/s13398-020-00967-4 (Paper No. 27)
Fréchet, M.: Les espaces abstraits. Hermann, Paris (1928)
Gabriyelyan, S., Ka̧kol, J., Kubzdela, A., Lopez Pellicer, M.: On topological properties of Fréchet locally convex spaces with the weak topology. Topol. Appl. 192, 123–137 (2015)
Gabriyelyan, S., Ka̧kol, J., Kubis, W., Marciszewski, W.: Networks for the weak topology of Banach and Fréchet spaces. J. Math. Anal. Appl. 432, 1183–1199 (2015)
Guerrero Sánchez, D.: Spaces with an M-diagonal. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(1), 9 (2020). https://doi.org/10.1007/s13398-019-00745-x (paper No. 16)
Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)
Kadec, M.I.: A proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Funk. Anal. i Prilozen. 1, 61–70 (1967)
Ka̧kol, J., Saxon, S.A., Tood, A.: Pseudocompact spaces $$X$$ and $$df$$-spaces $$C_{c}(X)$$. Proc. Am. Math. Soc. 132, 1703–1712 (2004)
Ka̧kol, J., Kubiś, W., Lopez-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Developments in Mathematics. Springer, New York (2011)
Katetov, M.: On mappings of countable spaces. Colloq. Math. 2, 30–33 (1949)
Krupski, M., Marciszewski, W.: On the weak and pointwise topologies in function spaces II. J. Math. Anal. Appl. 452, 646–658 (2017)
Michael, E.: $$\aleph _{0}$$-spaces. J. Math. Mech. 15, 983–1002 (1966)
Miljutin, A.A.: Isomorphisms of the space of continuous functions over compact sets of the carinality of the continuum (Russian). Teor. Func. Anal. i PPrilozen. 2, 150–156 (1966)
Pełczyński, A., Semadeni, Z.: Spaces of continuous functions. III. Spaces $$C(\Omega )$$ for $$\Omega $$ without perfect subsets. Studia Math. 18, 211–222 (1959)
Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, vol. 131. North-Holland, Amsterdam (1987)
Ruess, W.: Locally Convex Spaces not containing $$\ell _{1}$$. Funct. Approx. 50, 389–399 (2014)
Schlüchterman, G., Whiller, R.F.: The Mackey dual of a Banach space. Note di Mat. 11, 273–281 (1991)
Semadeni, Z.: Banach Spaces of Continuous Functions. PWN, Warsaw (1971)
Tkachuk, V.V.: Growths over discretes: some applications. Vestnik Mosk. Univ. Mat. Mec. 45(4), 19–21 (1990)
Tkachuk, V.V.: A $$C_p$$-Theory Problem Book. Special Features of Function Spaces. Problem Books in Mathematics. Springer, Cham (2014)
Toruńczyk, H.: Characterizing Hilbert space topology. Fund. Math. 111, 247–262 (1981)
Warner, S.: The topology of compact convergence on continuous functions spaces. Duke Math. J. 25, 265–282 (1958)
[-]