Mostrar el registro sencillo del ítem
dc.contributor.author | Kakol, Jerzy | es_ES |
dc.contributor.author | Moll López, Santiago Emmanuel | es_ES |
dc.date.accessioned | 2023-09-21T18:04:40Z | |
dc.date.available | 2023-09-21T18:04:40Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/196896 | |
dc.description.abstract | [EN] It is well known that the property of being a bounded set in the class of topological vector spaces E is not a topological property, where a subset B ¿ E is called a bounded set if every neighbourhood of zero U in E absorbs B. The paper deals with the problem which topological properties of bounded sets for the space Ck (X) (of continuous real-valued functions on a Tychonoff space X with the compact-open topology) endowed with the weak topology of Ck (X) can be transferred to bounded sets of Ck (Y) endowed with the weak topology, assuming that the corresponding weak topologies of both Ck (X) and Ck (Y) are homeomorphic. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Baire and hereditary Baire space | es_ES |
dc.subject | Bounded subset | es_ES |
dc.subject | Compact and compact scattered | es_ES |
dc.subject | Homeomorphism and linear homeomorphism | es_ES |
dc.subject | Spaces of continuous functions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A note on the weak topology of spaces Ck (X) of continuous functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-021-01051-1 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Kakol, J.; Moll López, SE. (2021). A note on the weak topology of spaces Ck (X) of continuous functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-10. https://doi.org/10.1007/s13398-021-01051-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-021-01051-1 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\438376 | es_ES |
dc.description.references | Arkhangel’skiĭ, A.V.: Topological function spaces. Math. and its Applications, vol. 78. Kluwer Academic Publishers, Dordrecht, Boston, London (1992) | es_ES |
dc.description.references | Banach, S.: Théorie des oprérations linéaires. PWN, Warsaw (1932) | es_ES |
dc.description.references | Banakh, T.: On Topological classification of normed spaces endowed with the weak topology of the topology of compact convergence. In: Banakh, T. (ed.) General Topology in Banach Spaces, pp. 171–178 . Nova Sci. Publ. (2001). arXiv:1908.09115v1 | es_ES |
dc.description.references | Banakh, T.: $$k$$-scattered spaces (2020). arXiv:1904.08969v1 | es_ES |
dc.description.references | Banakh, T., Kakol, J., Śliwa, W.: Josefson–Nissenzweig property for $$C_{p}$$-spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3015–3030 (2019). https://doi.org/10.1007/s13398-019-00667-8 | es_ES |
dc.description.references | Bessaga, Cz., Pełczyński, A.: Spaces of continuous functions (IV) (On isomorphical classification of spaces of continuous functions). Studia Math. 73, 53–62 (1960) | es_ES |
dc.description.references | Bierstedt, D., Bonet, J.: Density conditions in Fréchet and $$(DF)$$-spaces. Rev. Mat. Complut. 2, 59–75 (1989) | es_ES |
dc.description.references | Bierstedt, D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. RACSAM. 97, 159–188 (2003) | es_ES |
dc.description.references | Edgar, G.A., Wheller, R.F.: Topological properies of Banach spaces. Pac. J. Math. 115, 317–350 (1984) | es_ES |
dc.description.references | Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989) | es_ES |
dc.description.references | Fabian, M., Habala, P., Hàjek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. CMS Books Math./Ouvrages Math, SMC (2001) | es_ES |
dc.description.references | Ferrando, J.C., Ka̧kol, J.: On precompact sets in spaces $$C_{c}\left( X\right)$$. Georg. Math. J. 20, 247–254 (2013) | es_ES |
dc.description.references | Ferrando, J.C., Ka̧kol, J.: Metrizable Bounded Sets in $$C(X)$$ Spaces and Distinguished $$C_p(X)$$ Spaces. J. Convex Anal. 26, 1337–1346 (2019) | es_ES |
dc.description.references | Ferrando, J.C., Gabriyelyan, S., Ka̧kol, J.: Bounded sets structure of $$C_p(X)$$ and quasi-(DF)-spaces. Math. Nachr. 292, 2602–2618 (2019) | es_ES |
dc.description.references | Ferrando, J.C.: Descriptive topology for analysts. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), 34 (2020). https://doi.org/10.1007/s13398-020-00837-z(Paper No. 107) | es_ES |
dc.description.references | Ferrando, J.C., Kakol, J., Leiderman, A., Saxon, S.: Distinguished Cp(X) spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(1), 18 (2021). https://doi.org/10.1007/s13398-020-00967-4 (Paper No. 27) | es_ES |
dc.description.references | Fréchet, M.: Les espaces abstraits. Hermann, Paris (1928) | es_ES |
dc.description.references | Gabriyelyan, S., Ka̧kol, J., Kubzdela, A., Lopez Pellicer, M.: On topological properties of Fréchet locally convex spaces with the weak topology. Topol. Appl. 192, 123–137 (2015) | es_ES |
dc.description.references | Gabriyelyan, S., Ka̧kol, J., Kubis, W., Marciszewski, W.: Networks for the weak topology of Banach and Fréchet spaces. J. Math. Anal. Appl. 432, 1183–1199 (2015) | es_ES |
dc.description.references | Guerrero Sánchez, D.: Spaces with an M-diagonal. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(1), 9 (2020). https://doi.org/10.1007/s13398-019-00745-x (paper No. 16) | es_ES |
dc.description.references | Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981) | es_ES |
dc.description.references | Kadec, M.I.: A proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Funk. Anal. i Prilozen. 1, 61–70 (1967) | es_ES |
dc.description.references | Ka̧kol, J., Saxon, S.A., Tood, A.: Pseudocompact spaces $$X$$ and $$df$$-spaces $$C_{c}(X)$$. Proc. Am. Math. Soc. 132, 1703–1712 (2004) | es_ES |
dc.description.references | Ka̧kol, J., Kubiś, W., Lopez-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Developments in Mathematics. Springer, New York (2011) | es_ES |
dc.description.references | Katetov, M.: On mappings of countable spaces. Colloq. Math. 2, 30–33 (1949) | es_ES |
dc.description.references | Krupski, M., Marciszewski, W.: On the weak and pointwise topologies in function spaces II. J. Math. Anal. Appl. 452, 646–658 (2017) | es_ES |
dc.description.references | Michael, E.: $$\aleph _{0}$$-spaces. J. Math. Mech. 15, 983–1002 (1966) | es_ES |
dc.description.references | Miljutin, A.A.: Isomorphisms of the space of continuous functions over compact sets of the carinality of the continuum (Russian). Teor. Func. Anal. i PPrilozen. 2, 150–156 (1966) | es_ES |
dc.description.references | Pełczyński, A., Semadeni, Z.: Spaces of continuous functions. III. Spaces $$C(\Omega )$$ for $$\Omega $$ without perfect subsets. Studia Math. 18, 211–222 (1959) | es_ES |
dc.description.references | Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, vol. 131. North-Holland, Amsterdam (1987) | es_ES |
dc.description.references | Ruess, W.: Locally Convex Spaces not containing $$\ell _{1}$$. Funct. Approx. 50, 389–399 (2014) | es_ES |
dc.description.references | Schlüchterman, G., Whiller, R.F.: The Mackey dual of a Banach space. Note di Mat. 11, 273–281 (1991) | es_ES |
dc.description.references | Semadeni, Z.: Banach Spaces of Continuous Functions. PWN, Warsaw (1971) | es_ES |
dc.description.references | Tkachuk, V.V.: Growths over discretes: some applications. Vestnik Mosk. Univ. Mat. Mec. 45(4), 19–21 (1990) | es_ES |
dc.description.references | Tkachuk, V.V.: A $$C_p$$-Theory Problem Book. Special Features of Function Spaces. Problem Books in Mathematics. Springer, Cham (2014) | es_ES |
dc.description.references | Toruńczyk, H.: Characterizing Hilbert space topology. Fund. Math. 111, 247–262 (1981) | es_ES |
dc.description.references | Warner, S.: The topology of compact convergence on continuous functions spaces. Duke Math. J. 25, 265–282 (1958) | es_ES |