Mostrar el registro completo del ítem
Larroza, A.; Pérez-Benito, FJ.; Perez-Cortes, J.; Román, M.; Pollán, M.; Pérez-Gómez, B.; Salas-Trejo, D.... (2022). Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach. Diagnostics. 12(8):1-17. https://doi.org/10.3390/diagnostics12081822
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/196926
Título: | Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach | |
Autor: | Larroza, Andrés Pérez-Benito, Francisco Javier Román, Marta Pollán, Marina Pérez-Gómez, Beatriz Salas-Trejo, Dolores Casals, María | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Breast density assessed from digital mammograms is a known biomarker related to a higher risk of developing breast cancer. Supervised learning algorithms have been implemented to determine this. However, the performance ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/diagnostics12081822 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This research was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed by nomination to Valencian technological innovation centres under project expedient ...[+]
|
|
Tipo: |
|