- -

Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Larroza, Andrés es_ES
dc.contributor.author Pérez-Benito, Francisco Javier es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.contributor.author Román, Marta es_ES
dc.contributor.author Pollán, Marina es_ES
dc.contributor.author Pérez-Gómez, Beatriz es_ES
dc.contributor.author Salas-Trejo, Dolores es_ES
dc.contributor.author Casals, María es_ES
dc.contributor.author Llobet Azpitarte, Rafael es_ES
dc.date.accessioned 2023-09-21T18:06:04Z
dc.date.available 2023-09-21T18:06:04Z
dc.date.issued 2022-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/196926
dc.description.abstract [EN] Breast density assessed from digital mammograms is a known biomarker related to a higher risk of developing breast cancer. Supervised learning algorithms have been implemented to determine this. However, the performance of these algorithms depends on the quality of the ground-truth information, which expert readers usually provide. These expert labels are noisy approximations to the ground truth, as there is both intra- and inter-observer variability among them. Thus, it is crucial to provide a reliable method to measure breast density from mammograms. This paper presents a fully automated method based on deep learning to estimate breast density, including breast detection, pectoral muscle exclusion, and dense tissue segmentation. We propose a novel confusion matrix (CM)-YNet model for the segmentation step. This architecture includes networks to model each radiologist's noisy label and gives the estimated ground-truth segmentation as well as two parameters that allow interaction with a threshold-based labeling tool. A multi-center study involving 1785 women whose "for presentation" mammograms were obtained from 11 different medical facilities was performed. A total of 2496 mammograms were used as the training corpus, and 844 formed the testing corpus. Additionally, we included a totally independent dataset from a different center, composed of 381 women with one image per patient. Each mammogram was labeled independently by two expert radiologists using a threshold-based tool. The implemented CM-Ynet model achieved the highest DICE score averaged over both test datasets (0.82 +/- 0.14) when compared to the closest dense-tissue segmentation assessment from both radiologists. The level of concordance between the two radiologists showed a DICE score of 0.76 +/- 0.17. An automatic breast density estimator based on deep learning exhibited higher performance when compared with two experienced radiologists. This suggests that modeling each radiologist's label allows for better estimation of the unknown ground-truth segmentation. The advantage of the proposed model is that it also provides the threshold parameters that enable user interaction with a threshold-based tool. es_ES
dc.description.sponsorship This research was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed by nomination to Valencian technological innovation centres under project expedient IMDEEA/2021/100. It was also supported by grants from Instituto de Salud Carlos III FEDER (PI17/00047). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Diagnostics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mammography es_ES
dc.subject Breast density segmentation es_ES
dc.subject Deep learning es_ES
dc.subject Noisy labels es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/diagnostics12081822 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Institut Valencià de Competitivitat Empresarial//IMDEEA%2F2021%2F100//BIGSALUD3. Análisis de Datos e Inteligencia Artificial para optimización del sistema de salud/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F00047/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Larroza, A.; Pérez-Benito, FJ.; Perez-Cortes, J.; Román, M.; Pollán, M.; Pérez-Gómez, B.; Salas-Trejo, D.... (2022). Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach. Diagnostics. 12(8):1-17. https://doi.org/10.3390/diagnostics12081822 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/diagnostics12081822 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2075-4418 es_ES
dc.identifier.pmid 36010173 es_ES
dc.identifier.pmcid PMC9406546 es_ES
dc.relation.pasarela S\490952 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem