Mostrar el registro completo del ítem
Silva-Rodríguez, J.; Naranjo Ornedo, V.; Dolz, J. (2022). Constrained unsupervised anomaly segmentation. Medical Image Analysis. 80:1-12. https://doi.org/10.1016/j.media.2022.102526
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197770
Título: | Constrained unsupervised anomaly segmentation | |
Autor: | Dolz, Jose | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Current unsupervised anomaly localization approaches rely on generative models to learn the distribution of normal images, which is later used to identify potential anomalous regions derived from errors on the ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.media.2022.102526 | |
Código del Proyecto: |
|
|
Agradecimientos: |
J. Silva-Rodriguez work was supported by the Spanish Government under FPI Grant PRE2018-083443. The DGX-A100 used in this work was partially funded by Generalitat Valenciana/European Union through the European Regional ...[+]
|
|
Tipo: |
|