- -

Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández, Sergio es_ES
dc.contributor.author Gallego Ibáñez, Marta es_ES
dc.contributor.author VERDÚ AMAT, SAMUEL es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Grau Meló, Raúl es_ES
dc.date.accessioned 2023-10-05T18:01:44Z
dc.date.available 2023-10-05T18:01:44Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 1935-5130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197772
dc.description.abstract [EN] Texture-modified pumpkin was developed by using vacuum enzyme impregnation to soften texture to tolerable limits for the elderly population with swallowing and chewing difficulties. The impregnation process and macrostructural and microstructural enzyme action were explored by the laser light backscattering imaging technique and a microscopic study by digital image analysis. Texture was analyzed by a compression assay. The effect of enzyme treatment on antioxidant capacity and sugar content was evaluated and compared to the traditional cooking effect. Image analysis data demonstrated the effectiveness of the impregnation process and enzyme action on plant cell walls. Enzyme-treated samples at the end of the process had lower stiffness values with no fracture point, significantly greater antioxidant capacity and significantly lower total and reducing sugars contents than traditionally cooked pumpkins. The results herein obtained demonstrate the capability of using vacuum impregnation treatment with enzymes to soften pumpkins and their positive effects on antioxidant capacity and sugar content to develop safe and sensory-accepted texture-modified products for specific elderly populations. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-Universitat Politecnica de Valencia agreement with Springer Nature. Grant RTI2018098842-B-I00 funded by MCIN/AEI/1013039/501100011033 and by ERDF "A way of making Europe" is acknowledged. M.G. gratefully acknowledges the Universitat Politecnica de Valencia for her Postdoctoral grant (PAID-10-19). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cucurbita moschata es_ES
dc.subject Vacuum impregnation es_ES
dc.subject Elderly population es_ES
dc.subject Texture-modified foods es_ES
dc.subject Antioxidant capacity es_ES
dc.subject Sugars es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-022-02925-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098842-B-I00/ES/AVANCES EN EL DISEÑO DE ALIMENTOS CON TEXTURA MODIFICADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///APOSTD%2F2020%2F264//CONTRATO POSDOCTORAL GVA-RIBES LLOP. PROYECTO: ESTUDIO DEL PROCESADO ORAL DE DISTINTOS ALIMENTOS PARA GRUPOS CON DISFUNCIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-19//Mejora de prestaciones del páncreas artificial ante ingestas y ejercicio mediante observadores de perturbaciones y técnicas de compensación de retardos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Hernández, S.; Gallego Ibáñez, M.; Verdú Amat, S.; Barat Baviera, JM.; Talens Oliag, P.; Grau Meló, R. (2023). Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis. Food and Bioprocess Technology. 16(1):122-134. https://doi.org/10.1007/s11947-022-02925-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11947-022-02925-x es_ES
dc.description.upvformatpinicio 122 es_ES
dc.description.upvformatpfin 134 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\479331 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J. P., & Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33, 397–404. https://doi.org/10.1016/j.ifset.2015.11.002 es_ES
dc.description.references Adebayo, S. E., Hashim, N., Abdan, K., & Hanafi, M. (2016). Application and potential of backscattering imaging techniques in agricultural and food processing - A review. Journal of Food Engineering, 169, 155–164. https://doi.org/10.1016/j.jfoodeng.2015.08.006 es_ES
dc.description.references Aguilera, J. M., & Park, D. J. (2016). Texture-modified foods for the elderly: Status, technology and opportunities. Trends in Food Science and Technology, 57, 156–164. https://doi.org/10.1016/j.tifs.2016.10.001 es_ES
dc.description.references Alcalde, S., Ricote, M., & Rodríguez, R. (2020). Dysphagia Guide. Feeding in dysphagia: textural adequacy and the use of thickeners (Chapter 7). es_ES
dc.description.references Andersson, J., Garrido-Bañuelos, G., Bergdoll, M., Vilaplana, F., Menzel, C., Mihnea, M., & Lopez-Sanchez, P. (2022). Comparison of steaming and boiling of root vegetables for enhancing carbohydrate content and sensory profile. Journal of Food Engineering, 312. https://doi.org/10.1016/j.jfoodeng.2021.110754 es_ES
dc.description.references Bai, Y., Zhang, M., Chandra Atluri, S., Chen, J., & Gilbert, R. G. (2020). Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocolloids, 106. https://doi.org/10.1016/j.foodhyd.2020.105894 es_ES
dc.description.references Bermejo-Prada, A., van Buggenhout, S., Otero, L., Houben, K., van Loey, A., & Hendrickx, M. E. (2014). Kinetics of thermal and high-pressure inactivation of avocado polygalacturonase. Innovative Food Science and Emerging Technologies, 26, 51–58. https://doi.org/10.1016/j.ifset.2014.05.005 es_ES
dc.description.references Bober, J. R., & Nair, N. U. (2019). Galactose to tagatose isomerization at moderate temperatures with high conversion and productivity. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12497-8 es_ES
dc.description.references Cesaretti, M., Luppi, E., Maccari, F., & Volpi, N. (2003). A 96-well assay for uronic acid carbazole reaction. Carbohydrate Polymers, 54(1), 59–61. https://doi.org/10.1016/S0144-8617(03)00144-9 es_ES
dc.description.references Cichero, J. A. Y., Steele, C., Duivestein, J., Clavé, P., Chen, J., Kayashita, J., Dantas, R., Lecko, C., Speyer, R., Lam, P., & Murray, J. (2013). The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Current Physical Medicine and Rehabilitation Reports, 1(4), 280–291. https://doi.org/10.1007/s40141-013-0024-z es_ES
dc.description.references Dini, I., Tenore, G. C., & Dini, A. (2013). Effect of industrial and domestic processing on antioxidant properties of pumpkin pulp. LWT - Food Science and Technology, 53(1), 382–385. https://doi.org/10.1016/j.lwt.2013.01.005 es_ES
dc.description.references Drabo, P., & Delidovich, I. (2018). Catalytic isomerization of galactose into tagatose in the presence of bases and Lewis acids. Catalysis Communications, 107, 24–28. https://doi.org/10.1016/j.catcom.2018.01.011 es_ES
dc.description.references Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017 es_ES
dc.description.references Eom, S. H., Chun, Y. G., Park, C. E., Kim, B. K., Lee, S. H., & Park, D. J. (2018). Application of freeze–thaw enzyme impregnation to produce softened root vegetable foods for elderly consumers. Journal of Texture Studies, 49(4), 404–414. https://doi.org/10.1111/jtxs.12341 es_ES
dc.description.references Fachin, D., van Loey, A. M., Ly Nguyen, B., Verlent, I., Indrawati, A., & Hendrickx, M. E. (2003). Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 4(2), 135–142. https://doi.org/10.1016/S1466-8564(02)00090-5 es_ES
dc.description.references Fuentes, C., Verdú, S., Fuentes, A., Ruiz, M. J., & Barat, J. M. (2022). Effects of essential oil components exposure on biological parameters of Caenorhabditis elegans. Food and Chemical Toxicology, 159. https://doi.org/10.1016/j.fct.2021.112763 es_ES
dc.description.references Gallego, M., Arnal, M., Barat, J. M., & Talens, P. (2021). Effect of cooking on protein digestion and antioxidant activity of different legume pastes. Foods, 10(1). https://doi.org/10.3390/foods10010047 es_ES
dc.description.references Gallego, M., Barat, J. M., Grau, R., & Talens, P. (2022). Compositional, structural design and nutritional aspects of texture-modified foods for the elderly. Trends in Food Science and Technology, 119, 152–163. https://doi.org/10.1016/j.tifs.2021.12.008 es_ES
dc.description.references Grau, R., Verdú, S., Pérez, A. J., Barat, J. M., & Talens, P. (2021). Laser-backscattering imaging for characterizing pork loin tenderness. Effect of pre-treatment with enzyme and cooking. Journal of Food Engineering, 299. https://doi.org/10.1016/j.jfoodeng.2021.110508 es_ES
dc.description.references Gwala, S., Wainana, I., Pallares Pallares, A., Kyomugasho, C., Hendrickx, M., & Grauwet, T. (2019). Texture and interlinked post-process microstructures determine the in vitro starch digestibility of Bambara groundnuts with distinct hard-to-cook levels. Food Research International, 120, 1–11. https://doi.org/10.1016/j.foodres.2019.02.022 es_ES
dc.description.references Huang, D., Boxin, O. U., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c es_ES
dc.description.references Kao, F. J., Chiu, Y. S., & Chiang, W. D. (2014). Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan. Journal of Food and Drug Analysis, 22(2), 202–209. https://doi.org/10.1016/j.jfda.2013.09.010 es_ES
dc.description.references Lee, S. F., Harris, R., & Stout-Delgado, H. W. (2020). Targeted antioxidants as therapeutics for treatment of pneumonia in the elderly. Translational Research, 220, 43–56. https://doi.org/10.1016/j.trsl.2020.03.002 es_ES
dc.description.references Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčíková, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19(4), 252–276. https://doi.org/10.1016/j.jfca.2005.04.014 es_ES
dc.description.references Li, F., Wei, Y., Liang, L., Huang, L., Yu, G., & Li, Q. (2021). A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydrate Polymers, 251. https://doi.org/10.1016/j.carbpol.2020.117090 es_ES
dc.description.references Longato, E., Lucas-González, R., Peiretti, P. G., Meineri, G., Pérez-Alvarez, J. A., Viuda-Martos, M., & Fernández-López, J. (2017). The effect of natural ingredients (amaranth and pumpkin seeds) on the quality properties of chicken burgers. Food and Bioprocess Technology, 10(11), 2060–2068. https://doi.org/10.1007/s11947-017-1978-0 es_ES
dc.description.references Lyu, Y., Bi, J., Chen, Q., Wu, X., Qiao, Y., Hou, H., & Zhang, X. (2021). Bioaccessibility of carotenoids and antioxidant capacity of seed-used pumpkin byproducts powders as affected by particle size and corn oil during in vitro digestion process. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128541 es_ES
dc.description.references Mashiane, P., Mashitoa, F. M., Slabbert, R. M., & Sivakumar, D. (2021). Impact of household cooking techniques on colour, antioxidant and sensory properties of African pumpkin and pumpkin leaves. International Journal of Gastronomy and Food Science, 23. https://doi.org/10.1016/j.ijgfs.2021.100307 es_ES
dc.description.references Medina-Torres, L., Calderas, F., Gallegos-Infante, J. A., Gonzalez-Laredo, R. F., Rocha-Guzman, N. E., & Harte, F. (2009). Mechanical properties of ovalbumin gels formed at different conditions of concentration, ionic strength, pH, and aging time. Food and Bioprocess Technology, 3(1), 150–154. https://doi.org/10.1007/s11947-009-0257-0 es_ES
dc.description.references Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56(1), 139–147. https://doi.org/10.1021/jf072304b es_ES
dc.description.references Nakatsu, S., Kohyama, K., Watanabe, Y., Shibata, K., Sakamoto, K., & Shimoda, M. (2012). Mechanical properties of softened foodstuffs processed by freeze-thaw infusion of macerating enzyme. Innovative Food Science and Emerging Technologies, 16, 267–276. https://doi.org/10.1016/j.ifset.2012.07.010 es_ES
dc.description.references Paciulli, M., Rinaldi, M., Rodolfi, M., Ganino, T., Morbarigazzi, M., & Chiavaro, E. (2019). Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry, 274, 281–290. https://doi.org/10.1016/j.foodchem.2018.09.021 es_ES
dc.description.references Park, J. J., & Lee, W. Y. (2020). Softening of lotus root and carrot using freeze-thaw enzyme infusion for texture-modified foods. Food Bioscience, 35. https://doi.org/10.1016/j.fbio.2020.100557 es_ES
dc.description.references Phuhongsung, P., Zhang, M., & Devahastin, S. (2020). Influence of surface pH on color, texture and flavor of 3D printed composite mixture of soy protein isolate, pumpkin, and beetroot. Food and Bioprocess Technology, 13(9), 1600–1610. https://doi.org/10.1007/s11947-020-02497-8 es_ES
dc.description.references Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698 es_ES
dc.description.references Ribeiro, E. M. G., Chitchumroonchokchai, C., de Carvalho, L. M. J., de Moura, F. F., de Carvalho, J. L. V., & Failla, M. L. (2015). Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A carotenoids in biofortified pumpkin (Cucurbita moschata Duch.). Food Research International, 77, 620–626. https://doi.org/10.1016/j.foodres.2015.08.038 es_ES
dc.description.references Roininen, K., Fillion, L., Kilcast, D., & Lähteenmäki, L. (2004). Exploring difficult textural properties of fruit and vegetables for the elderly in Finland and the United Kingdom. Food Quality and Preference, 15(6), 517–530. https://doi.org/10.1016/j.foodqual.2003.11.003 es_ES
dc.description.references Sakamoto, K., Shibata, K., & Ishihara, M. (2006). Decreased hardness of dietary fiber-rich foods by the enzyme-infusion method. Bioscience, Biotechnology and Biochemistry, 70(7), 1564–1570. https://doi.org/10.1271/bbb.50562 es_ES
dc.description.references Segura-Badilla, O., Kammar-García, A., Vera-López, O., Aguilar-Alonso, P., Lazcano-Hernández, M., Avila-Sosa, R., & Navarro-Cruz, A. R. (2018). Simplified equation for resting energy expenditure in a population of elderly Chileans compared to indirect calorimetry. NFS Journal, 13, 23–29. https://doi.org/10.1016/j.nfs.2018.10.002 es_ES
dc.description.references Shibata, K., Sakamoto, K., Ishihara, M., Nakatsu, S., Kajihara, R., & Shimoda, M. (2010). Effects of freezing conditions on enzyme impregnation into food materials by freeze-thaw infusion. Food Science and Technology Research, 16(5), 359–364. https://doi.org/10.3136/fstr.16.359 es_ES
dc.description.references Singh, A., Raigond, P., Lal, M. K., Singh, B., Thakur, N., Changan, S. S., Kumar, D., & Dutt, S. (2020). Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. LWT, 127. https://doi.org/10.1016/j.lwt.2020.109363 es_ES
dc.description.references Su, D., Wang, Z., Dong, L., Huang, F., Zhang, R., Jia, X., Wu, G., & Zhang, M. (2019). Impact of thermal processing and storage temperature on the phenolic profile and antioxidant activity of different varieties of lychee juice. LWT, 116. https://doi.org/10.1016/j.lwt.2019.108578 es_ES
dc.description.references Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., & Hong, G. S. (2015). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615. https://doi.org/10.1007/s11947-015-1528-6 es_ES
dc.description.references Tomašević, I., Putnik, P., Valjak, F., Pavlić, B., Šojić, B., Bebek Markovinović, A., & Bursać Kovačević, D. (2021). 3D printing as novel tool for fruit-based functional food production. Current Opinion in Food Science, 41, 138–145. https://doi.org/10.1016/j.cofs.2021.03.015 es_ES
dc.description.references United Nations. (2020). Department of economic and social affairs, population division. World Population Ageing 2020 Highlights: Living arrangements of older persons. ST/ESA/SER.A/451. es_ES
dc.description.references Verdú, S., Barat, J. M., & Grau, R. (2019). Laser backscattering imaging as a non-destructive quality control technique for solid food matrices: Modelling the fibre enrichment effects on the physico-chemical and sensory properties of biscuits. Food Control, 100, 278–286. https://doi.org/10.1016/j.foodcont.2019.02.004 es_ES
dc.description.references Verdú, S., Pérez, A. J., Barat, J. M., & Grau, R. (2021). Non-destructive control in cheese processing: Modelling texture evolution in the milk curdling phase by laser backscattering imaging. Food Control, 121. https://doi.org/10.1016/j.foodcont.2020.107638 es_ES
dc.description.references Wichansawakun, S., Chupisanyarote, K., Wongpipathpong, W., Kaur, G., & Buttar, H. S. (2022). Antioxidant diets and functional foods attenuate dementia and cognition in elderly subjects. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 533–549. https://doi.org/10.1016/b978-0-12-819815-5.00028-8 es_ES
dc.description.references Wilson, A., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Customized shapes for chicken meat–based products: Feasibility study on 3D-printed nuggets. Food and Bioprocess Technology, 13(11), 1968–1983. https://doi.org/10.1007/s11947-020-02537-3 es_ES
dc.description.references Yang, H., Wu, Q., Ng, L. Y., & Wang, S. (2017). Effects of vacuum impregnation with calcium lactate and pectin methylesterase on quality attributes and chelate-soluble pectin morphology of fresh-cut papayas. Food and Bioprocess Technology, 10(5), 901–913. https://doi.org/10.1007/s11947-017-1874-7 es_ES
dc.description.references Yu, G., Zhao, J., Wei, Y., Huang, L., Li, F., Zhang, Y., & Li, Q. (2021). Physicochemical properties and antioxidant activity of pumpkin polysaccharide (Cucurbita moschata Duchesne ex Poiret) modified by subcritical water. https://doi.org/10.3390/foods1001 es_ES
dc.description.references Zhemerichkin, D. A., & Ptitchkina, N. M. (1995). The composition and properties of pumpkin and sugar beet pectins. Topics in Catalysis, 9(2), 147–149. https://doi.org/10.1016/S0268-005X(09)80277-4 es_ES
dc.description.references Zhou, C. L., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., Ni, Y. Y., & Li, Q. H. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical-chemical characteristics of pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science and Emerging Technologies, 21, 24–34. https://doi.org/10.1016/j.ifset.2013.11.002 es_ES
dc.description.references Zhou, C. L., Mi, L., Hu, X. Y., & Zhu, B. H. (2017). Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. Journal of Food Science and Technology, 54(10), 3118–3131. https://doi.org/10.1007/s13197-017-2748-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem