- -

Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes

Mostrar el registro completo del ítem

Castellanos-Soriano, J.; Álvarez-Gutiérrez, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2022). Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochemical & Photobiological Sciences. 21(7):1175-1184. https://doi.org/10.1007/s43630-022-00203-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197779

Ficheros en el ítem

Metadatos del ítem

Título: Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes
Autor: Castellanos-Soriano, Jorge Álvarez-Gutiérrez, Daniel Jiménez Molero, María Consuelo Pérez-Ruiz, Raúl
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In this work, the feasibility of triplet fusion upconversion (TFU, also named triplet-triplet annihilation upconversion) technology for the functionalization (arylation) of furans and thiophenes has been successfully ...[+]
Palabras clave: Visible light , Photoredox catalysis , Arylations , Furans , Thiophenes , Photon upconversion , Triplet fusion (triplet-triplet annihilation)
Derechos de uso: Reconocimiento (by)
Fuente:
Photochemical & Photobiological Sciences. (issn: 1474-905X )
DOI: 10.1007/s43630-022-00203-5
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1007/s43630-022-00203-5
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105391GB-C22/ES/DESARROLLO DE NUEVOS SISTEMAS DE CONVERSION BIFOTONICA A MAYOR FRECUENCIA BASADOS EN ANIQUILACION TRIPLETE-TRIPLETE PARA FOTOCATALISIS REDOX CON LUZ VISIBLE/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/
info:eu-repo/grantAgreement/MICINN//PRE2020-093783/
Agradecimientos:
We thank the Generalitat Valenciana (project CIDEGENT/2018/044) and the Spanish Government (project PID2019-105391GB-C22 funded by MCIN/AEI/10.13039/501100011033 and fellowship PRE2020-093783 funded by MCIN/AEI/10.13039/ ...[+]
Tipo: Artículo

References

Sun, Q.-C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92, 281–316. https://doi.org/10.1021/cm020897u

Frazer, L., Gallaher, J. K., & Schmidt, T. W. (2017). Optimizing the efficiency of solar photon upconversion. ACS Energy Letters, 2, 1346–1354. https://doi.org/10.1021/acsenergylett.7b00237

Gulzar, A., Xu, J., Yang, P. G., He, F., & Xu, L. (2017). Upconversion processes: Versatile biological applications and biosafety. Nanoscale, 9, 12248–12282. https://doi.org/10.1039/C7NR01836C [+]
Sun, Q.-C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92, 281–316. https://doi.org/10.1021/cm020897u

Frazer, L., Gallaher, J. K., & Schmidt, T. W. (2017). Optimizing the efficiency of solar photon upconversion. ACS Energy Letters, 2, 1346–1354. https://doi.org/10.1021/acsenergylett.7b00237

Gulzar, A., Xu, J., Yang, P. G., He, F., & Xu, L. (2017). Upconversion processes: Versatile biological applications and biosafety. Nanoscale, 9, 12248–12282. https://doi.org/10.1039/C7NR01836C

He, G. S., Tan, L.-S., Zheng, Q. D., & Prasad, P. N. (2008). Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chemical Reviews, 108, 1245–1330. https://doi.org/10.1021/cr050054x

Bharmoria, P., Bildirir, H., & Moth-Poulsen, K. (2020). Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chemical Society Reviews, 49, 6529–6554. https://doi.org/10.1039/D0CS00257G

Rauch, M. P., & Knowles, R. R. (2018). Applications and prospects for triplet-triplet annihilation photon upconversion. Chimia, 72, 501–507. https://doi.org/10.2533/chimia.2018.501

Singh-Rachford, T. N., & Castellano, F. N. (2010). Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews, 254, 2560–2573. https://doi.org/10.1016/j.ccr.2010.01.003

Barawi, M., Fresno, F., Pérez-Ruiz, R., & de la Peña O’Shea, V. A. (2019). Photoelectrochemical hydrogen evolution driven by visible-to-ultraviolet photon upconversion. ACS Appl. Energy Mater., 2, 207–211. https://doi.org/10.1021/acsaem.8b01916

Yanai, N., & Kimizuka, N. (2017). New triplet sensitization routes for photon upconversion: Thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Accounts of Chemical Research, 50, 2487–2495. https://doi.org/10.1021/acs.accounts.7b00235

Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ Science, 8, 103–125. https://doi.org/10.1039/C4EE02481H

Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2015). Upconversion luminescent materials: Advances and applications. Chemical Reviews, 115, 395–465. https://doi.org/10.1021/cr400478f

Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114, 5161–5214. https://doi.org/10.1021/cr400425h

Castellano, F. N., & Schmidt, T. J. (2014). Photochemical upconversion: The primacy of kinetics. Journal of Physical Chemistry Letters, 5, 4062–4072. https://doi.org/10.1021/jz501799m

McCusker, C. E., & Castellano, F. N. (2013). Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(I) MLCT sensitizer. Chemical Communications, 49, 3537–3539. https://doi.org/10.1039/C3CC40778K

Börjesson, K., Dzebo, D., Albinsson, B., & Moth-Poulsen, K. (2013). Photon upconversion facilitated molecular solar energy storage. J. Mater. Chem. A. https://doi.org/10.1039/C3TA12002C

Guo, S., Wu, W., Guo, H., & Zhao, J. (2012). Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet-triplet annihilation upconversions. Journal of Organic Chemistry, 77, 3933–3943. https://doi.org/10.1021/jo3003002

Gallavardin, T., Armagnat, C., Maury, O., Baldeck, P. L., Lindgren, M., Monnereau, C., & Andraud, C. (2012). An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Chemical Communications, 48, 1689–1691. https://doi.org/10.1039/C2CC15904J

Khnayzer, R. S., Blumhoff, J., Harrington, J. A., Haefele, A., Denga, F., & Castellano, F. N. (2012). Upconversion-powered photoelectrochemistry. Chemical Communications, 48, 209–211. https://doi.org/10.1039/C1CC16015J

Gertsen, A. S., Koerstz, M., & Mikkelsen, K. V. (2018). Benchmarking triplet-triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 20, 12182–12192. https://doi.org/10.1039/C8CP00588E

Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science, 364, 450. https://doi.org/10.1126/science.aav9713

Zhou, Q. Q., Zou, Y. Q., Lu, L. Q., & Xiao, W. J. (2019). Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angewandte Chemie International Edition, 58, 1586–1604. https://doi.org/10.1002/anie.201803102

Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L., & Glorius, F. (2018). Energy transfer catalysis mediated by visible light: Principles, applications. Chemical Society Reviews, 47, 7190–7202. https://doi.org/10.1039/C8CS00054A

Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W., & MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1, 0052. https://doi.org/10.1038/s41570-017-0052

Romero, N. A., & Nicewicz, D. A. (2016). Organic photoredox catalysis. Chemical Reviews, 116, 10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057

Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual catalysis strategies in photochemical synthesis. Chemical Reviews, 116, 10035–10074. https://doi.org/10.1021/acs.chemrev.6b00018

Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews, 113, 5322–5363. https://doi.org/10.1021/cr300503r

Schultz, D. M., & Yoon, T. P. (2014). Solar synthesis: Prospects in visible light photocatalysis. Science, 343, 1239176. https://doi.org/10.1126/science.1239176

Xuan, J., & Xiao, W.-J. (2012). Visible-light photoredox catalysis. Angewandte Chemie International Edition, 51, 6828–6838. https://doi.org/10.1002/anie.201200223

Beatty, J. W., & Stephenson, C. R. J. (2015). Amine functionalization via oxidative photoredox catalysis: Methodology development and complex molecule synthesis. Accounts of Chemical Research, 48, 1474–1484. https://doi.org/10.1021/acs.accounts.5b00068

Nakajima, K., Miyake, Y., & Nishibayashi, Y. (2016). Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Accounts of Chemical Research, 49, 1946–1956. https://doi.org/10.1021/acs.accounts.6b00251

Majek, M., & Jacobi von Wangelin, A. (2016). Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions. Accounts of Chemical Research, 49, 2316–2327. https://doi.org/10.1021/acs.accounts.6b00293

Ghosh, I., Marzo, L., Das, A., Shaikh, R., & Koenig, B. (2016). Visible light mediated photoredox catalytic arylation reactions. Accounts of Chemical Research, 49, 1566–1577. https://doi.org/10.1021/acs.accounts.6b00229

Jin, Y., & Fu, H. (2017). Visible-light photoredox decarboxylative couplings. Asian Journal of Organic Chemistry, 6, 368–385. https://doi.org/10.1002/ajoc.201600513

Xuan, J., Zhang, Z.-G., & Xiao, W.-J. (2015). Visible-light-induced decarboxylative functionalization of carboxylic acids and their derivatives. Angewandte Chemie International Edition, 54, 15632–15641. https://doi.org/10.1002/anie.201505731

Ravelli, D., Protti, S., Fagnoni, M., & Albini, A. (2013). Visible light photocatalysis. A green choice? Current Organic Chemistry, 17, 2366–2373. https://doi.org/10.2174/13852728113179990051

Reckenthler, M., & Griesbeck, A. G. (2013). Photoredox catalysis for organic syntheses. Advanced Synthesis and Catalysis, 355, 2727–2744. https://doi.org/10.1002/adsc.201300751

Teply, F. (2011). Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collection of Czechoslovak Chemical Communications, 76, 859–917. https://doi.org/10.1135/cccc2011078

Ghosh, I., Ghosh, T., Bardagi, J. I., & König, B. (2014). Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346, 725–728. https://doi.org/10.1126/science.1258232

Barham, J. P., & König, B. (2020). Synthetic photoelectrochemistry. Angewandte Chemie International Edition, 59, 11732–11747. https://doi.org/10.1002/anie.201913767

Garnes-Portolés, F., Greco, R., Oliver-Meseguer, J., Castellanos-Soriano, J., Jiménez, M. C., López-Haro, M., Hernández-Garrido, J. C., Boronat, M., Pérez-Ruiz, R., & Leyva-Pérez, A. (2021). Regioirregular and catalytic Mizoroki-Heck reactions. Nature Catalysis, 4(4), 293–303. https://doi.org/10.1038/s41929-021-00592-3

Glaser, F., Kerzig, C., & Wenger, O. S. (2021). Sensitization-initiated electron transfer via upconversion: Mechanism and photocatalytic applications. Chemical Science, 12, 9922–9933. https://doi.org/10.1039/D1SC02085D

Castellanos-Soriano, J., Herrera-Luna, J. C., Díaz Díaz, D., Jiménez, M. C., & Pérez-Ruiz, R. (2020). Recent applications of biphotonic processes in organic synthesis. Organic Chemistry Frontiers, 7, 1709–1716. https://doi.org/10.1039/D0QO00466A

Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565, 343–346. https://doi.org/10.1038/s41586-018-0835-2

Tokunaga, A., Uriarte, L. M., Mutoh, K., Fron, E., Hofkens, J., Sliwa, M., & Abe, J. (2019). Photochromic reaction by red light via triplet fusion upconversion. Journal of the American Chemical Society, 141, 17744–17753. https://doi.org/10.1021/jacs.9b08219

López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A., & Pérez-Ruiz, R. (2018). Synchronized biphotonic process triggering C–C coupling catalytic reactions. Applied Catalysis B, 237, 18–23. https://doi.org/10.1016/j.apcatb.2018.05.062

Kerzig, C., & Wenger, O. S. (2018). Sensitized triplet-triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 57, 6670–6678. https://doi.org/10.1039/C8SC01829D

Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R., & Jacobi von Wangelin, A. (2015). Application of visible-to-UV photon upconversion to photoredox catalysis: The activation of aryl bromides. Chemistry A European Journal, 21, 15496–15501. https://doi.org/10.1002/chem.201502698

Haering, M., Pérez-Ruiz, R., Jacobi von Wangelin, A., & Diaz Diaz, D. (2015). Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chemical Communications, 51, 16848–16851. https://doi.org/10.1039/C5CC06917C

Ackermann, L. (2009). Modern Arylation Methods. Wiley-VCH Verlag GmbH & KGaA.

Kalay, E., Küçükkeçeci, H., Kilic, H., & Metin, Ö. (2020). Black Phosphorus as a metal-free, visible-light active heterogeneous photoredox catalyst for the direct c-h arylation of heteroarenes. Chemical Communications, 56, 5901–5904. https://doi.org/10.1039/D0CC01874K

Schemalzbauer, M., Ghosh, I., & König, B. (2019). Utilising excited state organic anions for photoredox catalysis: Activation of (hetero)aryl chlorides by visible light-absorbing 9-anthrolate anions. Faraday Discussions, 215, 364–378. https://doi.org/10.1039/C8FD00176F

Wang, L., Byun, J., Li, R., Huang, W., & Zhang, K. A. I. (2018). Molecular Design of donor-acceptor-type organic photocatalysts for metal-free aromatic C–C bond formations under visible light. Advanced Synthesis and Catalysis, 360, 4312–4318. https://doi.org/10.1002/adsc.201800950

Bu, M.-J., Lu, G.-P., Jiang, J., & Cai, C. (2018). Merging visible-light photoredox and micellar catalysis: Arylation reactions with anilines nitrosated in situ. Catalysis Science & Technology, 8, 3728–3732. https://doi.org/10.1039/C8CY01221K

Maity, P., Kundu, D., & Ranu, B. C. (2015). Visible-light-photocatalyzed metal-free C-H heteroarylation of heteroarenes at room temperature: A sustainable synthesis of biheteroaryls. European Journal of Organic Chemistry, 2015, 1727–1734. https://doi.org/10.1002/ejoc.201500006

Zhang, J., Chen, J., Zhang, X., & Lei, X. (2014). Total syntheses of menisporphine and daurioxoisoporphine C enabled by photoredox-catalyzed direct C–H arylation of isoquinoline with aryldiazonium salt. Journal of Organic Chemistry, 79, 10682–10688. https://doi.org/10.1021/jo5020432

Cheng, Y., Gu, X., & Li, P. (2013). Visible-light photoredox in homolytic aromatic substitution: Direct arylation of arenes with aryl halides. Organic Letters, 15, 2664–2667. https://doi.org/10.1021/ol400946k

Hari, D. P., Schroll, P., & Koenig, B. (2012). Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. Journal of the American Chemical Society, 134, 2958–2961. https://doi.org/10.1021/ja212099r

Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2018). Dichromatic photo-catalytic substitutions of aryl halides with a small organic dye. Chemistry A European Journal, 24, 105–108. https://doi.org/10.1002/chem.201705326

Chatterjee, A., & König, B. (2019). Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angewdte Chemie International Edition, 58, 14289–14294. https://doi.org/10.1002/anie.201905485

Pal, A. K., Li, C., Hanan, G. S., & Zysman-Colman, E. (2018). Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angewdte Chemie International Edition, 57, 8027–8031. https://doi.org/10.1002/anie.201802532

Graham, M. A., Noonan, G., Cherryman, J. H., Douglas, J. J., Gonzalez, M., Jackson, L. V., Leslie, K., Liu, Z.-Q., McKinney, D., Munday, R. H., Parsons, C. D., Whittaker, D. T. E., Zhang, E.-X., & Zhang, J.-W. (2021). Development and proof of concept for a large-scale photoredox additive-free minisci reaction. Organic Process Research & Development, 25, 57–67. https://doi.org/10.1021/acs.oprd.0c00483

Brown, M., Aljarah, M., Asiki, H., Leung, L. M. H., Smithen, D. A., Miller, N., Nemeth, G., Davies, L., Niculescu-Duvaz, D., Zambon, A., & Springer, C. (2021). Toward the scale-up of a bicyclic homopiperazine via schmidt rearrangement and photochemical oxaziridine rearrangement in continuous-flow. Organic Process Research and Development, 25, 148–156. https://doi.org/10.1021/acs.oprd.6b00213

Lévesque, F., Di Maso, M. J., Narsimhan, K., Wismer, M. K., & Naber, J. R. (2020). Design of a kilogram scale, plug flow photoreactor enabled by high power LEDs. Organic Process Research and Development, 24, 2935–2940. https://doi.org/10.1021/acs.oprd.0c00373

Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., & Noël, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material sciences, and water treatment. Chemical Reviews, 116, 10276–10341. https://doi.org/10.1021/acs.chemrev.5b00707

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem