- -

Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation

Mostrar el registro completo del ítem

Zharmagambetova, A.; Auyezkhanova, A.; Talgatov, E.; Jumekeyeva, A.; Buharbayeva, F.; Akhmetova, S.; Myltykbayeva, Z.... (2022). Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation. Journal of Nanoparticle Research. 24(12). https://doi.org/10.1007/s11051-022-05621-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/198251

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation
Autor: Zharmagambetova, Alima Auyezkhanova, Assemgul Talgatov, Eldar Jumekeyeva, Aigul Buharbayeva, Farida Akhmetova, Sandugash Myltykbayeva, Zhannur López Nieto, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] A simple and environmentally friendly method, based on sequential adsorption of polyacrylamide (PAM) and transition metal ions (Pd2+, Ag+) on zinc oxide precipitated from water solution, was used to synthesize supported ...[+]
Palabras clave: Hydrogenation , Phenylacetylene , Palladium catalysts , Palladium-silver catalysts , Polyacrylamide , Polysaccharides , Nanocomposites , Environmentally friendly
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Nanoparticle Research. (issn: 1388-0764 )
DOI: 10.1007/s11051-022-05621-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11051-022-05621-1
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/Ministry of Education and Science, República de Kazajistán//AP09563383/
info:eu-repo/grantAgreement/Ministry of Education and Science, República de Kazajistán//AP09259638/
Agradecimientos:
This work was carried out with the financial support of the State Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grants Nos. AP09563383 and AP09259638). JMLN thanks also Spanish ...[+]
Tipo: Artículo

References

Blaser HU, Schnyder A, Steiner H, Rossler F, Baumeister P (2008) Handbook of Heterogeneous Catalysis. In: Ertl G, Knozinger H, Scüth F, Weitkamp J (eds) Selective Hydrogenation of Functionalized Hydrocarbons. Wiley-VCH Verlag, Weinheim, pp 3284–3308. https://doi.org/10.1002/9783527610044.hetcat0167

Cordoba M, Coloma-Pascual F, Quiroga ME, Lederhos CR (2019) Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts. Ind Eng Chem Res 58:17182–17194. https://doi.org/10.1021/acs.iecr.9b02081

Huang F, Jia Zh, Diao J, Yuan H, Da Su, Liu H (2019) Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J Energy Chem 33:31–36. https://doi.org/10.1016/j.jechem.2018.08.006 [+]
Blaser HU, Schnyder A, Steiner H, Rossler F, Baumeister P (2008) Handbook of Heterogeneous Catalysis. In: Ertl G, Knozinger H, Scüth F, Weitkamp J (eds) Selective Hydrogenation of Functionalized Hydrocarbons. Wiley-VCH Verlag, Weinheim, pp 3284–3308. https://doi.org/10.1002/9783527610044.hetcat0167

Cordoba M, Coloma-Pascual F, Quiroga ME, Lederhos CR (2019) Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts. Ind Eng Chem Res 58:17182–17194. https://doi.org/10.1021/acs.iecr.9b02081

Huang F, Jia Zh, Diao J, Yuan H, Da Su, Liu H (2019) Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J Energy Chem 33:31–36. https://doi.org/10.1016/j.jechem.2018.08.006

Nikolaev SA, Zanaveskin LN, Smirnov VV, Averyanov VA, Zanaveskin KL (2009) Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russ Chem Rev 78:231–247. https://doi.org/10.1070/RC2009v078n03ABEH003893

Yang L, Yu S, Peng C, Fang X, Cheng Z, Zhou Z (2019) Semihydrogenation of phenylacetylene over nonprecious Ni-based catalysts supported on AlSBA-15. J Catal 370:310–320. https://doi.org/10.1016/j.jcat.2019.01.012

Markov PV, Mashkovsky IS, Bragina GO, Wärnå J, Gerasimov EY, Bukhtiyarov VI, Stakheev AYu, Murzin DY (2019) Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: experimental data and theoretical analysis. Chem Eng J 358:520–530. https://doi.org/10.1016/j.cej.2018.10.016

Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A Gen 200:3–22. https://doi.org/10.1016/S0926-860X(00)00645-1

Rassolov AV, Bragina GO, Baeva GN, Smirnova NS, Kazakov AV, Mashkovsky IS, Stakheev AYu (2019) Liquid-phase hydrogenation of internal and terminal alkynes on Pd–Ag/Al2O3 catalyst. Kinet Catal 60:642–649. https://doi.org/10.1134/S0023158419050069

Lindlar H (1952) Ein neuer Katalysator für selektive Hydrierungen. Helv Chim Acta 35:446–450. https://doi.org/10.1002/hlca.19520350205

Hori J, Murata K, Sugai T, Shinohara H, Noyori R, Arai N, Kurono N, Phkuma T (2009) Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv Synth Catal 351:3143–3149. https://doi.org/10.1002/adsc.200900721

Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, Alothman ZA, Mola GT (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31:257–269. https://doi.org/10.1016/j.jksus.2017.06.012

Wu W, Zhang W, Long Y, Qin J, Wen H, Ma J (2018) Ni modified Pd nanoparticles immobilized on hollow nitrogen doped carbon spheres for the simehydrogenation of phenylacetylene. J Colloid Interface Sci 531:642–653. https://doi.org/10.1016/j.jcis.2018.07.069

Jin Z, Xiao H, Zhou W, Zhang D, Peng X (2017) Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer. Roy Soc Open Sci 4:171414. https://doi.org/10.1098/rsos.171414

Belousov OV, Tarabanko VE, Borisov RV, Simakova IL, Zhyzhaev AM, Tarabanko N, Isakova VG, Parfenov VV, Ponomarenko IV (2018) Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials. React Kinet Mech Cat 127:25–39. https://doi.org/10.1007/s11144-018-1430-0

da Silva FP, Fiorio JL, Gonçalves RV, Teixeira-Neto E, Rossi LM (2018) Synergic effect of copper and palladium for selective hydrogenation of alkynes. Ind Eng Chem Res 57:16209–16216. https://doi.org/10.1021/acs.iecr.8b03627

Betti C, Torres G, Maccarrone MJ, Lederhos C, Quiroga M, Yori J, Vera C (2019) Kinetic study of the selective hydrogenation of 3-hexyne over W-Pd/alumina catalysts. React Kinet Mech Catal 127:259–281. https://doi.org/10.1007/s11144-019-01546-4

Yang K, Chen X, Wang L, Zhang L, Jin S, Liang C (2017) SBA-15-supported metal silicides prepared by chemical vapor deposition as efficient catalysts towards the semihydrogenation of phenylacetylene. ChemCatChem 9:1337–1342. https://doi.org/10.1002/cctc.201601653

Pang M, Shao Z, Wang X, Liang C, Xia W (2015) Toward economical purification of styrene monomers: eggshell Mo2C for front-end hydrogenation of phenylacetylene. AIChE J 61:2522–2531. https://doi.org/10.1002/aic.14822

Yang K, Chen X, Guan J, Liang C (2015) Nickel silicides prepared from organometallic polymer as efficient catalyst towards hydrogenation of phenylacetylene. Catal Today 246:176–183. https://doi.org/10.1016/j.cattod.2014.09.027

Chen X, Li M, Guan J, Wang X, Williams CT, Liang C (2012) Nickel–silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene. Ind Eng Chem Res 51:3604–3611. https://doi.org/10.1021/ie202227j

Rassolov AV, Markov PV, Bragina GO, Baeva GN, Mashkovskii IS, Yakushev IA, Vargaftik MN, Stakheev AY (2016) Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes. Kinet Catal 57:853–858. https://doi.org/10.1134/s0023158416060124

Shen Y, Yin K, An C, Xiao Z (2018) Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl Surf Sci 456:1–6. https://doi.org/10.1016/j.apsusc.2018.06.091

Patarroyo J, Delgado JA, Merkoçi F, Genç A, Sauthier G, Llorca J, Arbiol J, Bastus NG, Godard C, Claver C, Puntes V (2019) Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Sci Rep 9:18776–18783. https://doi.org/10.1038/s41598-019-55105-x

Wowsnick G, Teschner D, Armbruster M, Kasatkin I, Girgsdies F, Grin Y, Schlogl R, Behrens M (2014) Surface dynamics of the intermetallic catalyst Pd2Ga, part II – reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J Catal 309:221–230. https://doi.org/10.1016/j.jcat.2013.09.018

Chen L, Huang B, Qiu X, Wang X, Luque R, Li Y (2016) Seed-mediated growth of MOF-encapsulated Pd@Ag core-shell nanoparticles: toward advanced room temperature nanocatalysts. Chem Sci 7:228–233. https://doi.org/10.1039/C5SC02925B

Zhang R, Xue M, Wang B, Ling L, Fan M (2019) C2H2 selective hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and Pd) core−shell nanocluster catalysts: the effects of composition and nanocluster size on catalytic activity and selectivity. J Phys Chem C 123:16107–16117. https://doi.org/10.1021/acs.jpcc.9b01757

Zharmagambetova AK, Zamanbekova AT, Darmenbayeva AS, Auyezkhanova AS, Jumekeyeva AI, Talgatov ET (2017) Effect of polymers on the formation of nanosized palladium catalysts and their activity and selectivity in the hydrogenation of acetylenic alcohols. Theor Exp Chem 53:265–269. https://doi.org/10.1007/s11237-017-9524-8

Zharmagambetova AK, Seitkalieva KS, Talgatov ET, Auezkhanova AS, Dzhardimalieva GI, Pomogailo AD (2016) Polymer modified supported palladium catalysts for the hydrogenation of acetylene compounds. Kinet Catal 57:360–367. https://doi.org/10.1134/S0023158416030174

Wolfson A, Levy-Ontman O (2020) Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Mol Catal 493:111048–111061. https://doi.org/10.1016/j.mcat.2020.111048

Muhammad A, Lee D, Shin Y, Park J (2021) Recent progress in polysaccharide aerogels: their synthesis, application, and future outlook. Polymers 13:1347–1377. https://doi.org/10.3390/polym13081347

Boily J-F, Seward TM, Charnock JM (2007) The hydrolysis and precipitation of Pd(II) in 0.6 mol kg-1 NaCl: a potentiometric, spectrophotometric, and EXAFS study. Geochim Cosmochim Acta 71:4834–4845. https://doi.org/10.1016/j.gca.2007.08.015

Talgatov ET, Auezkhanova AS, Kapysheva UN, Bakhtiyrova SK, Zharmagambetova AK (2016) Synthesis and detoxifying properties of pectin-montmorillonite composite. J Inorg Organomet Polym 26:1387–1391. https://doi.org/10.1007/s10904-016-0422-7

Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32:505

Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833. https://doi.org/10.1021/la301232r

Wang J, An C, Zhang M, Qin C, Ming X, Zhang Q (2012) Photochemical conversion of AgCl nanocubes to hybrid AgCl-Ag nanoparticles with high activity and long-term stability towards photocatalytic degradation of organic dyes. Can J Chem 90:858–864. https://doi.org/10.1139/v2012-079

Chen X, Shi C, Wang XB, Li W-Y, Liang C (2021) Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun Chem 4:175. https://doi.org/10.1038/s42004-021-00612-0

Hub S, Hilaire L, Touroude R (1988) Hydrogenation of But-1-yne and But-1-ene on palladium catalysts particle size effect. Appl Catal 36:307–322. https://doi.org/10.1016/S0166-9834(00)80124-4

Nosowa LV, Stenin MV, Nogin YN, Ryndin YA (1992) EXAFS and XPS studies of the influence of metal particle size, nature of support and H, and CO adsorption on the structure and electronic properties of palladium. Appl Surf Sci 55:43–48. https://doi.org/10.1016/0169-4332(92)90379-C

Wu T, Kaden WE, Kunkel WA, Anderson SL (2009) Size-dependent oxidation of Pdn (n≤13) on alumina/NiAl(110): correlation with Pd core level binding energies. Surf Sci 603:2764–2770. https://doi.org/10.1016/j.susc.2009.07.014

Wang S, Xin Z, Huang X, Yu W, Niu S, Shao L (2017) Nanosizing Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Phys Chem Chem Phys 19:6164–6168. https://doi.org/10.1039/C6CP08805h

Wang X, Keane MA (2019) Gas phase selective hydrogenation of phenylacetylene to styrene over Au/Al2O3. J Chem Technol Biotechnol 94:3772–3779. https://doi.org/10.1002/jctb.6002

Bukhtiyarov VI, Slin’ko MG, (2001) Metallic nanosystems in catalysis. Russ Chem Rev 70:147–159. https://doi.org/10.1070/rc2001v070n02abeh000637

Karakhanov EA, Aksenov IA, Kardashev SV, Maksimov AL, Putilin FN, Shatokhin AN, Savilov SV (2013) Ultra-low palladium catalysts for phenylacetylene semihydrogenation: Synthesis by modified pulsed laser ablation–deposition. Appl Catal A Gen 464:253–260. https://doi.org/10.1016/j.apcata.2013.05.045

Zharmagambetova AK, Talgatov ET, Auyezkhanova AS, Tumabayev NZ, Bukharbayeva FU (2020) Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation. React Kinet Mech Cat 131:153–166. https://doi.org/10.1007/s11144-020-01857-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem