- -

Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zharmagambetova, Alima es_ES
dc.contributor.author Auyezkhanova, Assemgul es_ES
dc.contributor.author Talgatov, Eldar es_ES
dc.contributor.author Jumekeyeva, Aigul es_ES
dc.contributor.author Buharbayeva, Farida es_ES
dc.contributor.author Akhmetova, Sandugash es_ES
dc.contributor.author Myltykbayeva, Zhannur es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2023-10-17T18:01:33Z
dc.date.available 2023-10-17T18:01:33Z
dc.date.issued 2022-12 es_ES
dc.identifier.issn 1388-0764 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198251
dc.description.abstract [EN] A simple and environmentally friendly method, based on sequential adsorption of polyacrylamide (PAM) and transition metal ions (Pd2+, Ag+) on zinc oxide precipitated from water solution, was used to synthesize supported mono- and bimetallic catalysts with various Pd:Ag ratios. The catalyst characterization results indicated that PAM and metal ions are completely adsorbed by zinc oxide, forming polymer-stabilized Pd and Ag nanoparticles of 1¿3 nm in size, evenly distributed on the support surface. The catalysts were studied in the hydrogenation of phenylacetylene under mild conditions (0.1 MPa, 40 °C). es_ES
dc.description.sponsorship This work was carried out with the financial support of the State Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grants Nos. AP09563383 and AP09259638). JMLN thanks also Spanish Government for financial support (CRTl2018-099668-B-C21 project). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Nanoparticle Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hydrogenation es_ES
dc.subject Phenylacetylene es_ES
dc.subject Palladium catalysts es_ES
dc.subject Palladium-silver catalysts es_ES
dc.subject Polyacrylamide es_ES
dc.subject Polysaccharides es_ES
dc.subject Nanocomposites es_ES
dc.subject Environmentally friendly es_ES
dc.title Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11051-022-05621-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science, República de Kazajistán//AP09563383/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science, República de Kazajistán//AP09259638/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Zharmagambetova, A.; Auyezkhanova, A.; Talgatov, E.; Jumekeyeva, A.; Buharbayeva, F.; Akhmetova, S.; Myltykbayeva, Z.... (2022). Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation. Journal of Nanoparticle Research. 24(12). https://doi.org/10.1007/s11051-022-05621-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11051-022-05621-1 es_ES
dc.description.upvformatpinicio 236 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\478066 es_ES
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología es_ES
dc.contributor.funder Ministry of Education and Science, República de Kazajistán es_ES
dc.description.references Blaser HU, Schnyder A, Steiner H, Rossler F, Baumeister P (2008) Handbook of Heterogeneous Catalysis. In: Ertl G, Knozinger H, Scüth F, Weitkamp J (eds) Selective Hydrogenation of Functionalized Hydrocarbons. Wiley-VCH Verlag, Weinheim, pp 3284–3308. https://doi.org/10.1002/9783527610044.hetcat0167 es_ES
dc.description.references Cordoba M, Coloma-Pascual F, Quiroga ME, Lederhos CR (2019) Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts. Ind Eng Chem Res 58:17182–17194. https://doi.org/10.1021/acs.iecr.9b02081 es_ES
dc.description.references Huang F, Jia Zh, Diao J, Yuan H, Da Su, Liu H (2019) Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J Energy Chem 33:31–36. https://doi.org/10.1016/j.jechem.2018.08.006 es_ES
dc.description.references Nikolaev SA, Zanaveskin LN, Smirnov VV, Averyanov VA, Zanaveskin KL (2009) Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russ Chem Rev 78:231–247. https://doi.org/10.1070/RC2009v078n03ABEH003893 es_ES
dc.description.references Yang L, Yu S, Peng C, Fang X, Cheng Z, Zhou Z (2019) Semihydrogenation of phenylacetylene over nonprecious Ni-based catalysts supported on AlSBA-15. J Catal 370:310–320. https://doi.org/10.1016/j.jcat.2019.01.012 es_ES
dc.description.references Markov PV, Mashkovsky IS, Bragina GO, Wärnå J, Gerasimov EY, Bukhtiyarov VI, Stakheev AYu, Murzin DY (2019) Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: experimental data and theoretical analysis. Chem Eng J 358:520–530. https://doi.org/10.1016/j.cej.2018.10.016 es_ES
dc.description.references Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A Gen 200:3–22. https://doi.org/10.1016/S0926-860X(00)00645-1 es_ES
dc.description.references Rassolov AV, Bragina GO, Baeva GN, Smirnova NS, Kazakov AV, Mashkovsky IS, Stakheev AYu (2019) Liquid-phase hydrogenation of internal and terminal alkynes on Pd–Ag/Al2O3 catalyst. Kinet Catal 60:642–649. https://doi.org/10.1134/S0023158419050069 es_ES
dc.description.references Lindlar H (1952) Ein neuer Katalysator für selektive Hydrierungen. Helv Chim Acta 35:446–450. https://doi.org/10.1002/hlca.19520350205 es_ES
dc.description.references Hori J, Murata K, Sugai T, Shinohara H, Noyori R, Arai N, Kurono N, Phkuma T (2009) Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv Synth Catal 351:3143–3149. https://doi.org/10.1002/adsc.200900721 es_ES
dc.description.references Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, Alothman ZA, Mola GT (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31:257–269. https://doi.org/10.1016/j.jksus.2017.06.012 es_ES
dc.description.references Wu W, Zhang W, Long Y, Qin J, Wen H, Ma J (2018) Ni modified Pd nanoparticles immobilized on hollow nitrogen doped carbon spheres for the simehydrogenation of phenylacetylene. J Colloid Interface Sci 531:642–653. https://doi.org/10.1016/j.jcis.2018.07.069 es_ES
dc.description.references Jin Z, Xiao H, Zhou W, Zhang D, Peng X (2017) Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer. Roy Soc Open Sci 4:171414. https://doi.org/10.1098/rsos.171414 es_ES
dc.description.references Belousov OV, Tarabanko VE, Borisov RV, Simakova IL, Zhyzhaev AM, Tarabanko N, Isakova VG, Parfenov VV, Ponomarenko IV (2018) Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials. React Kinet Mech Cat 127:25–39. https://doi.org/10.1007/s11144-018-1430-0 es_ES
dc.description.references da Silva FP, Fiorio JL, Gonçalves RV, Teixeira-Neto E, Rossi LM (2018) Synergic effect of copper and palladium for selective hydrogenation of alkynes. Ind Eng Chem Res 57:16209–16216. https://doi.org/10.1021/acs.iecr.8b03627 es_ES
dc.description.references Betti C, Torres G, Maccarrone MJ, Lederhos C, Quiroga M, Yori J, Vera C (2019) Kinetic study of the selective hydrogenation of 3-hexyne over W-Pd/alumina catalysts. React Kinet Mech Catal 127:259–281. https://doi.org/10.1007/s11144-019-01546-4 es_ES
dc.description.references Yang K, Chen X, Wang L, Zhang L, Jin S, Liang C (2017) SBA-15-supported metal silicides prepared by chemical vapor deposition as efficient catalysts towards the semihydrogenation of phenylacetylene. ChemCatChem 9:1337–1342. https://doi.org/10.1002/cctc.201601653 es_ES
dc.description.references Pang M, Shao Z, Wang X, Liang C, Xia W (2015) Toward economical purification of styrene monomers: eggshell Mo2C for front-end hydrogenation of phenylacetylene. AIChE J 61:2522–2531. https://doi.org/10.1002/aic.14822 es_ES
dc.description.references Yang K, Chen X, Guan J, Liang C (2015) Nickel silicides prepared from organometallic polymer as efficient catalyst towards hydrogenation of phenylacetylene. Catal Today 246:176–183. https://doi.org/10.1016/j.cattod.2014.09.027 es_ES
dc.description.references Chen X, Li M, Guan J, Wang X, Williams CT, Liang C (2012) Nickel–silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene. Ind Eng Chem Res 51:3604–3611. https://doi.org/10.1021/ie202227j es_ES
dc.description.references Rassolov AV, Markov PV, Bragina GO, Baeva GN, Mashkovskii IS, Yakushev IA, Vargaftik MN, Stakheev AY (2016) Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes. Kinet Catal 57:853–858. https://doi.org/10.1134/s0023158416060124 es_ES
dc.description.references Shen Y, Yin K, An C, Xiao Z (2018) Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl Surf Sci 456:1–6. https://doi.org/10.1016/j.apsusc.2018.06.091 es_ES
dc.description.references Patarroyo J, Delgado JA, Merkoçi F, Genç A, Sauthier G, Llorca J, Arbiol J, Bastus NG, Godard C, Claver C, Puntes V (2019) Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Sci Rep 9:18776–18783. https://doi.org/10.1038/s41598-019-55105-x es_ES
dc.description.references Wowsnick G, Teschner D, Armbruster M, Kasatkin I, Girgsdies F, Grin Y, Schlogl R, Behrens M (2014) Surface dynamics of the intermetallic catalyst Pd2Ga, part II – reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J Catal 309:221–230. https://doi.org/10.1016/j.jcat.2013.09.018 es_ES
dc.description.references Chen L, Huang B, Qiu X, Wang X, Luque R, Li Y (2016) Seed-mediated growth of MOF-encapsulated Pd@Ag core-shell nanoparticles: toward advanced room temperature nanocatalysts. Chem Sci 7:228–233. https://doi.org/10.1039/C5SC02925B es_ES
dc.description.references Zhang R, Xue M, Wang B, Ling L, Fan M (2019) C2H2 selective hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and Pd) core−shell nanocluster catalysts: the effects of composition and nanocluster size on catalytic activity and selectivity. J Phys Chem C 123:16107–16117. https://doi.org/10.1021/acs.jpcc.9b01757 es_ES
dc.description.references Zharmagambetova AK, Zamanbekova AT, Darmenbayeva AS, Auyezkhanova AS, Jumekeyeva AI, Talgatov ET (2017) Effect of polymers on the formation of nanosized palladium catalysts and their activity and selectivity in the hydrogenation of acetylenic alcohols. Theor Exp Chem 53:265–269. https://doi.org/10.1007/s11237-017-9524-8 es_ES
dc.description.references Zharmagambetova AK, Seitkalieva KS, Talgatov ET, Auezkhanova AS, Dzhardimalieva GI, Pomogailo AD (2016) Polymer modified supported palladium catalysts for the hydrogenation of acetylene compounds. Kinet Catal 57:360–367. https://doi.org/10.1134/S0023158416030174 es_ES
dc.description.references Wolfson A, Levy-Ontman O (2020) Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Mol Catal 493:111048–111061. https://doi.org/10.1016/j.mcat.2020.111048 es_ES
dc.description.references Muhammad A, Lee D, Shin Y, Park J (2021) Recent progress in polysaccharide aerogels: their synthesis, application, and future outlook. Polymers 13:1347–1377. https://doi.org/10.3390/polym13081347 es_ES
dc.description.references Boily J-F, Seward TM, Charnock JM (2007) The hydrolysis and precipitation of Pd(II) in 0.6 mol kg-1 NaCl: a potentiometric, spectrophotometric, and EXAFS study. Geochim Cosmochim Acta 71:4834–4845. https://doi.org/10.1016/j.gca.2007.08.015 es_ES
dc.description.references Talgatov ET, Auezkhanova AS, Kapysheva UN, Bakhtiyrova SK, Zharmagambetova AK (2016) Synthesis and detoxifying properties of pectin-montmorillonite composite. J Inorg Organomet Polym 26:1387–1391. https://doi.org/10.1007/s10904-016-0422-7 es_ES
dc.description.references Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32:505 es_ES
dc.description.references Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833. https://doi.org/10.1021/la301232r es_ES
dc.description.references Wang J, An C, Zhang M, Qin C, Ming X, Zhang Q (2012) Photochemical conversion of AgCl nanocubes to hybrid AgCl-Ag nanoparticles with high activity and long-term stability towards photocatalytic degradation of organic dyes. Can J Chem 90:858–864. https://doi.org/10.1139/v2012-079 es_ES
dc.description.references Chen X, Shi C, Wang XB, Li W-Y, Liang C (2021) Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun Chem 4:175. https://doi.org/10.1038/s42004-021-00612-0 es_ES
dc.description.references Hub S, Hilaire L, Touroude R (1988) Hydrogenation of But-1-yne and But-1-ene on palladium catalysts particle size effect. Appl Catal 36:307–322. https://doi.org/10.1016/S0166-9834(00)80124-4 es_ES
dc.description.references Nosowa LV, Stenin MV, Nogin YN, Ryndin YA (1992) EXAFS and XPS studies of the influence of metal particle size, nature of support and H, and CO adsorption on the structure and electronic properties of palladium. Appl Surf Sci 55:43–48. https://doi.org/10.1016/0169-4332(92)90379-C es_ES
dc.description.references Wu T, Kaden WE, Kunkel WA, Anderson SL (2009) Size-dependent oxidation of Pdn (n≤13) on alumina/NiAl(110): correlation with Pd core level binding energies. Surf Sci 603:2764–2770. https://doi.org/10.1016/j.susc.2009.07.014 es_ES
dc.description.references Wang S, Xin Z, Huang X, Yu W, Niu S, Shao L (2017) Nanosizing Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Phys Chem Chem Phys 19:6164–6168. https://doi.org/10.1039/C6CP08805h es_ES
dc.description.references Wang X, Keane MA (2019) Gas phase selective hydrogenation of phenylacetylene to styrene over Au/Al2O3. J Chem Technol Biotechnol 94:3772–3779. https://doi.org/10.1002/jctb.6002 es_ES
dc.description.references Bukhtiyarov VI, Slin’ko MG, (2001) Metallic nanosystems in catalysis. Russ Chem Rev 70:147–159. https://doi.org/10.1070/rc2001v070n02abeh000637 es_ES
dc.description.references Karakhanov EA, Aksenov IA, Kardashev SV, Maksimov AL, Putilin FN, Shatokhin AN, Savilov SV (2013) Ultra-low palladium catalysts for phenylacetylene semihydrogenation: Synthesis by modified pulsed laser ablation–deposition. Appl Catal A Gen 464:253–260. https://doi.org/10.1016/j.apcata.2013.05.045 es_ES
dc.description.references Zharmagambetova AK, Talgatov ET, Auyezkhanova AS, Tumabayev NZ, Bukharbayeva FU (2020) Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation. React Kinet Mech Cat 131:153–166. https://doi.org/10.1007/s11144-020-01857-x es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem