Mostrar el registro sencillo del ítem
dc.contributor.author | Zharmagambetova, Alima | es_ES |
dc.contributor.author | Auyezkhanova, Assemgul | es_ES |
dc.contributor.author | Talgatov, Eldar | es_ES |
dc.contributor.author | Jumekeyeva, Aigul | es_ES |
dc.contributor.author | Buharbayeva, Farida | es_ES |
dc.contributor.author | Akhmetova, Sandugash | es_ES |
dc.contributor.author | Myltykbayeva, Zhannur | es_ES |
dc.contributor.author | López Nieto, José Manuel | es_ES |
dc.date.accessioned | 2023-10-17T18:01:33Z | |
dc.date.available | 2023-10-17T18:01:33Z | |
dc.date.issued | 2022-12 | es_ES |
dc.identifier.issn | 1388-0764 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198251 | |
dc.description.abstract | [EN] A simple and environmentally friendly method, based on sequential adsorption of polyacrylamide (PAM) and transition metal ions (Pd2+, Ag+) on zinc oxide precipitated from water solution, was used to synthesize supported mono- and bimetallic catalysts with various Pd:Ag ratios. The catalyst characterization results indicated that PAM and metal ions are completely adsorbed by zinc oxide, forming polymer-stabilized Pd and Ag nanoparticles of 1¿3 nm in size, evenly distributed on the support surface. The catalysts were studied in the hydrogenation of phenylacetylene under mild conditions (0.1 MPa, 40 °C). | es_ES |
dc.description.sponsorship | This work was carried out with the financial support of the State Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grants Nos. AP09563383 and AP09259638). JMLN thanks also Spanish Government for financial support (CRTl2018-099668-B-C21 project). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Nanoparticle Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hydrogenation | es_ES |
dc.subject | Phenylacetylene | es_ES |
dc.subject | Palladium catalysts | es_ES |
dc.subject | Palladium-silver catalysts | es_ES |
dc.subject | Polyacrylamide | es_ES |
dc.subject | Polysaccharides | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Environmentally friendly | es_ES |
dc.title | Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11051-022-05621-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministry of Education and Science, República de Kazajistán//AP09563383/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministry of Education and Science, República de Kazajistán//AP09259638/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Zharmagambetova, A.; Auyezkhanova, A.; Talgatov, E.; Jumekeyeva, A.; Buharbayeva, F.; Akhmetova, S.; Myltykbayeva, Z.... (2022). Synthesis of Polymer Protected Pd-Ag/ZnO Catalysts for Phenylacetylene hydrogenation. Journal of Nanoparticle Research. 24(12). https://doi.org/10.1007/s11051-022-05621-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11051-022-05621-1 | es_ES |
dc.description.upvformatpinicio | 236 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\478066 | es_ES |
dc.contributor.funder | Comisión Interministerial de Ciencia y Tecnología | es_ES |
dc.contributor.funder | Ministry of Education and Science, República de Kazajistán | es_ES |
dc.description.references | Blaser HU, Schnyder A, Steiner H, Rossler F, Baumeister P (2008) Handbook of Heterogeneous Catalysis. In: Ertl G, Knozinger H, Scüth F, Weitkamp J (eds) Selective Hydrogenation of Functionalized Hydrocarbons. Wiley-VCH Verlag, Weinheim, pp 3284–3308. https://doi.org/10.1002/9783527610044.hetcat0167 | es_ES |
dc.description.references | Cordoba M, Coloma-Pascual F, Quiroga ME, Lederhos CR (2019) Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts. Ind Eng Chem Res 58:17182–17194. https://doi.org/10.1021/acs.iecr.9b02081 | es_ES |
dc.description.references | Huang F, Jia Zh, Diao J, Yuan H, Da Su, Liu H (2019) Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J Energy Chem 33:31–36. https://doi.org/10.1016/j.jechem.2018.08.006 | es_ES |
dc.description.references | Nikolaev SA, Zanaveskin LN, Smirnov VV, Averyanov VA, Zanaveskin KL (2009) Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russ Chem Rev 78:231–247. https://doi.org/10.1070/RC2009v078n03ABEH003893 | es_ES |
dc.description.references | Yang L, Yu S, Peng C, Fang X, Cheng Z, Zhou Z (2019) Semihydrogenation of phenylacetylene over nonprecious Ni-based catalysts supported on AlSBA-15. J Catal 370:310–320. https://doi.org/10.1016/j.jcat.2019.01.012 | es_ES |
dc.description.references | Markov PV, Mashkovsky IS, Bragina GO, Wärnå J, Gerasimov EY, Bukhtiyarov VI, Stakheev AYu, Murzin DY (2019) Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: experimental data and theoretical analysis. Chem Eng J 358:520–530. https://doi.org/10.1016/j.cej.2018.10.016 | es_ES |
dc.description.references | Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A Gen 200:3–22. https://doi.org/10.1016/S0926-860X(00)00645-1 | es_ES |
dc.description.references | Rassolov AV, Bragina GO, Baeva GN, Smirnova NS, Kazakov AV, Mashkovsky IS, Stakheev AYu (2019) Liquid-phase hydrogenation of internal and terminal alkynes on Pd–Ag/Al2O3 catalyst. Kinet Catal 60:642–649. https://doi.org/10.1134/S0023158419050069 | es_ES |
dc.description.references | Lindlar H (1952) Ein neuer Katalysator für selektive Hydrierungen. Helv Chim Acta 35:446–450. https://doi.org/10.1002/hlca.19520350205 | es_ES |
dc.description.references | Hori J, Murata K, Sugai T, Shinohara H, Noyori R, Arai N, Kurono N, Phkuma T (2009) Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv Synth Catal 351:3143–3149. https://doi.org/10.1002/adsc.200900721 | es_ES |
dc.description.references | Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, Alothman ZA, Mola GT (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31:257–269. https://doi.org/10.1016/j.jksus.2017.06.012 | es_ES |
dc.description.references | Wu W, Zhang W, Long Y, Qin J, Wen H, Ma J (2018) Ni modified Pd nanoparticles immobilized on hollow nitrogen doped carbon spheres for the simehydrogenation of phenylacetylene. J Colloid Interface Sci 531:642–653. https://doi.org/10.1016/j.jcis.2018.07.069 | es_ES |
dc.description.references | Jin Z, Xiao H, Zhou W, Zhang D, Peng X (2017) Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer. Roy Soc Open Sci 4:171414. https://doi.org/10.1098/rsos.171414 | es_ES |
dc.description.references | Belousov OV, Tarabanko VE, Borisov RV, Simakova IL, Zhyzhaev AM, Tarabanko N, Isakova VG, Parfenov VV, Ponomarenko IV (2018) Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials. React Kinet Mech Cat 127:25–39. https://doi.org/10.1007/s11144-018-1430-0 | es_ES |
dc.description.references | da Silva FP, Fiorio JL, Gonçalves RV, Teixeira-Neto E, Rossi LM (2018) Synergic effect of copper and palladium for selective hydrogenation of alkynes. Ind Eng Chem Res 57:16209–16216. https://doi.org/10.1021/acs.iecr.8b03627 | es_ES |
dc.description.references | Betti C, Torres G, Maccarrone MJ, Lederhos C, Quiroga M, Yori J, Vera C (2019) Kinetic study of the selective hydrogenation of 3-hexyne over W-Pd/alumina catalysts. React Kinet Mech Catal 127:259–281. https://doi.org/10.1007/s11144-019-01546-4 | es_ES |
dc.description.references | Yang K, Chen X, Wang L, Zhang L, Jin S, Liang C (2017) SBA-15-supported metal silicides prepared by chemical vapor deposition as efficient catalysts towards the semihydrogenation of phenylacetylene. ChemCatChem 9:1337–1342. https://doi.org/10.1002/cctc.201601653 | es_ES |
dc.description.references | Pang M, Shao Z, Wang X, Liang C, Xia W (2015) Toward economical purification of styrene monomers: eggshell Mo2C for front-end hydrogenation of phenylacetylene. AIChE J 61:2522–2531. https://doi.org/10.1002/aic.14822 | es_ES |
dc.description.references | Yang K, Chen X, Guan J, Liang C (2015) Nickel silicides prepared from organometallic polymer as efficient catalyst towards hydrogenation of phenylacetylene. Catal Today 246:176–183. https://doi.org/10.1016/j.cattod.2014.09.027 | es_ES |
dc.description.references | Chen X, Li M, Guan J, Wang X, Williams CT, Liang C (2012) Nickel–silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene. Ind Eng Chem Res 51:3604–3611. https://doi.org/10.1021/ie202227j | es_ES |
dc.description.references | Rassolov AV, Markov PV, Bragina GO, Baeva GN, Mashkovskii IS, Yakushev IA, Vargaftik MN, Stakheev AY (2016) Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes. Kinet Catal 57:853–858. https://doi.org/10.1134/s0023158416060124 | es_ES |
dc.description.references | Shen Y, Yin K, An C, Xiao Z (2018) Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl Surf Sci 456:1–6. https://doi.org/10.1016/j.apsusc.2018.06.091 | es_ES |
dc.description.references | Patarroyo J, Delgado JA, Merkoçi F, Genç A, Sauthier G, Llorca J, Arbiol J, Bastus NG, Godard C, Claver C, Puntes V (2019) Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Sci Rep 9:18776–18783. https://doi.org/10.1038/s41598-019-55105-x | es_ES |
dc.description.references | Wowsnick G, Teschner D, Armbruster M, Kasatkin I, Girgsdies F, Grin Y, Schlogl R, Behrens M (2014) Surface dynamics of the intermetallic catalyst Pd2Ga, part II – reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J Catal 309:221–230. https://doi.org/10.1016/j.jcat.2013.09.018 | es_ES |
dc.description.references | Chen L, Huang B, Qiu X, Wang X, Luque R, Li Y (2016) Seed-mediated growth of MOF-encapsulated Pd@Ag core-shell nanoparticles: toward advanced room temperature nanocatalysts. Chem Sci 7:228–233. https://doi.org/10.1039/C5SC02925B | es_ES |
dc.description.references | Zhang R, Xue M, Wang B, Ling L, Fan M (2019) C2H2 selective hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and Pd) core−shell nanocluster catalysts: the effects of composition and nanocluster size on catalytic activity and selectivity. J Phys Chem C 123:16107–16117. https://doi.org/10.1021/acs.jpcc.9b01757 | es_ES |
dc.description.references | Zharmagambetova AK, Zamanbekova AT, Darmenbayeva AS, Auyezkhanova AS, Jumekeyeva AI, Talgatov ET (2017) Effect of polymers on the formation of nanosized palladium catalysts and their activity and selectivity in the hydrogenation of acetylenic alcohols. Theor Exp Chem 53:265–269. https://doi.org/10.1007/s11237-017-9524-8 | es_ES |
dc.description.references | Zharmagambetova AK, Seitkalieva KS, Talgatov ET, Auezkhanova AS, Dzhardimalieva GI, Pomogailo AD (2016) Polymer modified supported palladium catalysts for the hydrogenation of acetylene compounds. Kinet Catal 57:360–367. https://doi.org/10.1134/S0023158416030174 | es_ES |
dc.description.references | Wolfson A, Levy-Ontman O (2020) Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Mol Catal 493:111048–111061. https://doi.org/10.1016/j.mcat.2020.111048 | es_ES |
dc.description.references | Muhammad A, Lee D, Shin Y, Park J (2021) Recent progress in polysaccharide aerogels: their synthesis, application, and future outlook. Polymers 13:1347–1377. https://doi.org/10.3390/polym13081347 | es_ES |
dc.description.references | Boily J-F, Seward TM, Charnock JM (2007) The hydrolysis and precipitation of Pd(II) in 0.6 mol kg-1 NaCl: a potentiometric, spectrophotometric, and EXAFS study. Geochim Cosmochim Acta 71:4834–4845. https://doi.org/10.1016/j.gca.2007.08.015 | es_ES |
dc.description.references | Talgatov ET, Auezkhanova AS, Kapysheva UN, Bakhtiyrova SK, Zharmagambetova AK (2016) Synthesis and detoxifying properties of pectin-montmorillonite composite. J Inorg Organomet Polym 26:1387–1391. https://doi.org/10.1007/s10904-016-0422-7 | es_ES |
dc.description.references | Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32:505 | es_ES |
dc.description.references | Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833. https://doi.org/10.1021/la301232r | es_ES |
dc.description.references | Wang J, An C, Zhang M, Qin C, Ming X, Zhang Q (2012) Photochemical conversion of AgCl nanocubes to hybrid AgCl-Ag nanoparticles with high activity and long-term stability towards photocatalytic degradation of organic dyes. Can J Chem 90:858–864. https://doi.org/10.1139/v2012-079 | es_ES |
dc.description.references | Chen X, Shi C, Wang XB, Li W-Y, Liang C (2021) Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun Chem 4:175. https://doi.org/10.1038/s42004-021-00612-0 | es_ES |
dc.description.references | Hub S, Hilaire L, Touroude R (1988) Hydrogenation of But-1-yne and But-1-ene on palladium catalysts particle size effect. Appl Catal 36:307–322. https://doi.org/10.1016/S0166-9834(00)80124-4 | es_ES |
dc.description.references | Nosowa LV, Stenin MV, Nogin YN, Ryndin YA (1992) EXAFS and XPS studies of the influence of metal particle size, nature of support and H, and CO adsorption on the structure and electronic properties of palladium. Appl Surf Sci 55:43–48. https://doi.org/10.1016/0169-4332(92)90379-C | es_ES |
dc.description.references | Wu T, Kaden WE, Kunkel WA, Anderson SL (2009) Size-dependent oxidation of Pdn (n≤13) on alumina/NiAl(110): correlation with Pd core level binding energies. Surf Sci 603:2764–2770. https://doi.org/10.1016/j.susc.2009.07.014 | es_ES |
dc.description.references | Wang S, Xin Z, Huang X, Yu W, Niu S, Shao L (2017) Nanosizing Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Phys Chem Chem Phys 19:6164–6168. https://doi.org/10.1039/C6CP08805h | es_ES |
dc.description.references | Wang X, Keane MA (2019) Gas phase selective hydrogenation of phenylacetylene to styrene over Au/Al2O3. J Chem Technol Biotechnol 94:3772–3779. https://doi.org/10.1002/jctb.6002 | es_ES |
dc.description.references | Bukhtiyarov VI, Slin’ko MG, (2001) Metallic nanosystems in catalysis. Russ Chem Rev 70:147–159. https://doi.org/10.1070/rc2001v070n02abeh000637 | es_ES |
dc.description.references | Karakhanov EA, Aksenov IA, Kardashev SV, Maksimov AL, Putilin FN, Shatokhin AN, Savilov SV (2013) Ultra-low palladium catalysts for phenylacetylene semihydrogenation: Synthesis by modified pulsed laser ablation–deposition. Appl Catal A Gen 464:253–260. https://doi.org/10.1016/j.apcata.2013.05.045 | es_ES |
dc.description.references | Zharmagambetova AK, Talgatov ET, Auyezkhanova AS, Tumabayev NZ, Bukharbayeva FU (2020) Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation. React Kinet Mech Cat 131:153–166. https://doi.org/10.1007/s11144-020-01857-x | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |