Resumen:
|
[ES] La isla energética de Bornholm es una de las dos islas energéticas del Acuerdo Climático danés, cuyo objetivo es suministrar varios GW de electricidad generada por la energía eólica marina y, a largo plazo, convertir ...[+]
[ES] La isla energética de Bornholm es una de las dos islas energéticas del Acuerdo Climático danés, cuyo objetivo es suministrar varios GW de electricidad generada por la energía eólica marina y, a largo plazo, convertir la energía en hidrógeno y otros combustibles conectando a la isla tecnologías Power-to-X basadas en electrolizadores. El objetivo de este proyecto es diseñar una cartera de electrolizadores de 1 GW para Bornholm que pueda maximizar la sinergia entre la energía eólica marina y el hidrógeno. Una configuración inicial de la cartera puede ser, por ejemplo, 50x 20MW, 100x 10MW, o 200x5 MW, pudiendo variar el número de unidades electrolizadoras y la capacidad de las unidades. El análisis tendrá en cuenta las variaciones de los parámetros tecnoeconómicos pertinentes, por ejemplo, la capacidad, la velocidad de rampa, el tiempo de arranque/parada, los gastos de capital, etc., a la hora de estimar el rendimiento tecnoeconómico agregado de cada cartera. También se desarrollarán estrategias para coordinar el funcionamiento de múltiples electrolizadores con el fin de evaluar el rendimiento operativo de la cartera de electrolizadores con diferentes configuraciones.
[-]
[EN] Denmark’s government has the ambitious plan to build two energy islands to accommodate renewable energy production in the North Sea and in the Baltic Sea, and is also
aiming to increase its electrolysis capacity to ...[+]
[EN] Denmark’s government has the ambitious plan to build two energy islands to accommodate renewable energy production in the North Sea and in the Baltic Sea, and is also
aiming to increase its electrolysis capacity to 46 MW by 2030.
Integrating PowertoX with offshore wind power is considered to be a potential option to
achieve high amount of green hydrogen production and decarbonize other high emitted
sectors. However, achieving gigawattscale water electrolysis plant encounters various
obstacles concerning technological viability and market implementation. In this context,
the flexibility to load adjustments plays a key role for the integration with a fluctuating
renewable energy source.
This project deals with the integration of a 1 GW electrolyzer plant with 1 GW offshore
wind power. The analysis of the current work evaluated a total of 8 scenarions with different combinations of stack configuration, electrolysis technology and control strategy. In
addition, 26 scenarios more are conducted to analyze the sensitivity of different parameters. The different scenarios have been modeled in Python and using Energinet’s wind
data as input. This project uses the closest estimations for a gigawatt scale electrolyser
plant commissioned in 2030, from manufacturer’s data, other research papers and some
calculations based on price forecasts.
The project concludes that AEL technology is still considered a better option for the gigascale project in both technical and economical perspective. Its reduced CAPEX, longer
stack lifetime and lower consumption rates (kWh/kg) are crucial factors that supports this
technology. And, despite ramp rate is better for PEMEL, the fluctuations of the wind power
barely exceeds the ramp rate limits of AEL. This decision can be reversed if in the future
years, PEMEL technology achieves better consumption rates than AEL.
[-]
|