- -

Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs

Mostrar el registro completo del ítem

Blanes-Selva, V.; Doñate-Martínez, A.; Linklater, G.; Garcia-Gomez, JM. (2022). Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs. Health Informatics Journal. 28(2):1-18. https://doi.org/10.1177/14604582221092592

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/198408

Ficheros en el ítem

Metadatos del ítem

Título: Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs
Autor: Blanes-Selva, Vicent Doñate-Martínez, Ascensión Linklater, Gordon Garcia-Gomez, Juan M
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Palliative care (PC) has demonstrated benefits for life-limiting illnesses. Bad survival prognosis and patients' decline are working criteria to guide PC decision-making for older patients. Still, there is not a clear ...[+]
Palabras clave: Palliative care , Machine learning , Deep learning , Frailty , Mortality , Older patients , Needs assessment
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Health Informatics Journal. (issn: 1460-4582 )
DOI: 10.1177/14604582221092592
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/14604582221092592
Coste APC: 1210
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/825750/EU
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the InAdvance project (H2020-SC1-BHC-2018-2020 No. 825750).
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem