Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes-Selva, Vicent | es_ES |
dc.contributor.author | Doñate-Martínez, Ascensión | es_ES |
dc.contributor.author | Linklater, Gordon | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.date.accessioned | 2023-10-19T18:01:25Z | |
dc.date.available | 2023-10-19T18:01:25Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 1460-4582 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198408 | |
dc.description.abstract | [EN] Palliative care (PC) has demonstrated benefits for life-limiting illnesses. Bad survival prognosis and patients' decline are working criteria to guide PC decision-making for older patients. Still, there is not a clear consensus on when to initiate early PC. This work aims to propose machine learning approaches to predict frailty and mortality in older patients in supporting PC decision-making. Predictive models based on Gradient Boosting Machines (GBM) and Deep Neural Networks (DNN) were implemented for binary 1-year mortality classification, survival estimation and 1-year frailty classification. Besides, we tested the similarity between mortality and frailty distributions. The 1-year mortality classifier achieved an Area Under the Curve Receiver Operating Characteristic (AUC ROC) of 0.87 [0.86, 0.87], whereas the mortality regression model achieved an mean absolute error (MAE) of 333.13 [323.10, 342.49] days. Moreover, the 1-year frailty classifier obtained an AUC ROC of 0.89 [0.88, 0.90]. Mortality and frailty criteria were weakly correlated and had different distributions, which can be interpreted as these assessment measurements are complementary for PC decision-making. This study provides new models that can be part of decision-making systems for PC services in older patients after their external validation. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the InAdvance project (H2020-SC1-BHC-2018-2020 No. 825750). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Health Informatics Journal | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Palliative care | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Frailty | es_ES |
dc.subject | Mortality | es_ES |
dc.subject | Older patients | es_ES |
dc.subject | Needs assessment | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/14604582221092592 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825750/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Blanes-Selva, V.; Doñate-Martínez, A.; Linklater, G.; Garcia-Gomez, JM. (2022). Complementary frailty and mortality prediction models on older patients as a tool for assessing palliative care needs. Health Informatics Journal. 28(2):1-18. https://doi.org/10.1177/14604582221092592 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/14604582221092592 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 35642719 | es_ES |
dc.relation.pasarela | S\466233 | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
upv.costeAPC | 1210 | es_ES |