- -

Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment

Mostrar el registro completo del ítem

Mahmood, M.; Mateu, J.; Hernández-Orallo, E. (2022). Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment. Stochastic Environmental Research and Risk Assessment. 36(3):893-917. https://doi.org/10.1007/s00477-021-02065-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/198416

Ficheros en el ítem

Metadatos del ítem

Título: Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment
Autor: Mahmood, Mateen Mateu, Jorge Hernández-Orallo, Enrique
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] The current situation of COVID-19 highlights the paramount importance of infectious disease surveillance, which necessitates early monitoring for effective response. Policymakers are interested in data insights ...[+]
Palabras clave: Compartment modeling , Contact tracing , Digital epidemiology , Human mobility , Self organizing maps , Trajectories
Derechos de uso: Reserva de todos los derechos
Fuente:
Stochastic Environmental Research and Risk Assessment. (issn: 1436-3240 )
DOI: 10.1007/s00477-021-02065-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00477-021-02065-2
Tipo: Artículo

References

Anglemyer A, Moore TH, Parker L, Chambers T, Grady A, Chiu K, Parry M, Wilczynska M, Flemyng E, Bero L (2020) Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database Syst Rev (8)

Angulo J, Yu HL, Langousis A, Kolovos A, Wang J, Madrid AE, Christakos G (2013) Spatiotemporal infectious disease modeling: a bme-sir approach. PloS one 8(9):e72,168(9):e72, 168

Asan U, Ercan S (2012) An introduction to self-organizing maps. In: Computational intelligence systems in industrial engineering, Springer, pp 295–315 [+]
Anglemyer A, Moore TH, Parker L, Chambers T, Grady A, Chiu K, Parry M, Wilczynska M, Flemyng E, Bero L (2020) Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database Syst Rev (8)

Angulo J, Yu HL, Langousis A, Kolovos A, Wang J, Madrid AE, Christakos G (2013) Spatiotemporal infectious disease modeling: a bme-sir approach. PloS one 8(9):e72,168(9):e72, 168

Asan U, Ercan S (2012) An introduction to self-organizing maps. In: Computational intelligence systems in industrial engineering, Springer, pp 295–315

Bação F, Lobo V, Painho M (2005) Self-organizing maps as substitutes for k-means clustering. In: International conference on computational science. Springer, pp 476–483

Bardina X, Ferrante M, Rovira C (2020) A stochastic epidemic model of covid-19 disease. arXiv preprint arXiv:200502859

Benreguia B, Moumen H, Merzoug MA (2020) Tracking covid-19 by tracking infectious trajectories. arXiv preprint arXiv:200505523

Berger DW, Herkenhoff KF, Mongey S (2020) An seir infectious disease model with testing and conditional quarantine. Tech. rep, National Bureau of Economic Research

Bisin A, Moro A (2020) Learning epidemiology by doing: The empirical implications of a spatial-sir model with behavioral responses. Tech. rep, National Bureau of Economic Research

Brockmann D, David V, Gallardo AM (2009) Human mobility and spatial disease dynamics. Rev Nonlinear Dyn Complex 2:1–24

Desjardins M, Hohl A, Delmelle E (2020) Rapid surveillance of covid-19 in the united states using a prospective space-time scan statistic: Detecting and evaluating emerging clusters. Appl Geogr 102202

Eames KT, Keeling MJ (2003) Contact tracing and disease control. Proc R Soc Lond B 270(1533):2565–2571

Enright J, Kao RR (2018) Epidemics on dynamic networks. Epidemics 24:88–97

Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dorner L, Parker M, Bonsall D, Fraser C (2020) Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science

Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

Gopal S (2016) Artificial neural networks in geospatial analysis. International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology, pp 1–7

Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, Munday JD, Kucharski AJ, Edmunds WJ, Sun F, Flasche S, Quilty BJ, Davies N, Liu Y, Clifford S, Klepac P, Jit M, Diamond C, Gibbs H, van Zandvoort K, Funk S, Eggo RM (2020) Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Glob Health 8(4):e488–e496

Henriques R, Lobo V, Bação F (2012) Spatial clustering using hierarchical som. Applications of Self-Organizing Maps, pp 231–250

Hernández-Orallo E, Manzoni P, Calafate CT, Cano JC (2020) Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: the case of covid-19. IEEE Access

Keeling MJ, Rohani P (2011) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton

Lang JC, De Sterck H, Kaiser JL, Miller JC (2018) Analytic models for sir disease spread on random spatial networks. J Complex Networks 6(6):948–970

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J (2020) Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science

Mahsin M, Deardon R, Brown P (2020) Geographically dependent individual-level models for infectious diseases transmission. Biostatistics

Martinez-Beneito MA, Mateu J, Botella-Rocamora P (2020) Spatio-temporal small area surveillance of the covid-19 pandemics. arXiv preprint arXiv:201103938

Martinez-Martin N, Wieten S, Magnus D, Cho MK (2020) Digital contact tracing, privacy, and public health. Hastings Cent Rep 50(3):43–46

Müller M, Derlet PM, Mudry C, Aeppli G (2020) Testing of asymptomatic individuals for fast feedback-control of covid-19 pandemic. Phys Biol 17(6):065,007(6):065007

Park J, Chang W, Choi B (2021) An interaction neyman-scott point process model for coronavirus disease-19. arXiv preprint arXiv:210202999

Reichert L, Brack S, Scheuermann B (2020) Privacy-preserving contact tracing of covid-19 patients. IACR Cryptol ePrint Arch 2020:375

Rezaei M, Azarmi M (2020) Deepsocial: Social distancing monitoring and infection risk assessment in covid-19 pandemic. Appl Sci 10(21):7514

Salathé M (2018) Digital epidemiology: what is it, and where is it going? Life Sci Soc Policy 14(1):1

Simmerman JM, Suntarattiwong P, Levy J, Gibbons RV, Cruz C, Shaman J, Jarman RG, Chotpitayasunondh T (2010) Influenza a Virus Contamination of Common Household Surfaces during the 2009 Influenza A (H1N1) Pandemic in Bangkok, Thailand: Implications for Contact Transmission. Clin Infect Diseases 51(9):1053–1061

Souza RC, Neill DB, Assunção RM, Meira W (2019) Identifying high-risk areas for dengue infection using mobility patterns on twitter. Online J Public Health Inform 11(1)

Takács B, Hadjimichael Y (2019) High order discretization methods for spatial dependent sir models. arXiv preprint arXiv:190901330

Tsai TC, Chan HH (2015) Nccu trace: Social-network-aware mobility trace. IEEE Commun Mag 53(10):144–149

Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI et al (2020) Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. N Engl J Med 382(16):1564–1567

Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586–600

Wang P, Fu Y, Liu G, Hu W, Aggarwal C (2017) Human mobility synchronization and trip purpose detection with mixture of hawkes processes. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 495–503

WHO (2021) WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/

Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol (TIST) 6(3):1–41

Zheng Y, Fu H, Xie X, Ma W, Li Q (2011) Geolife gps trajectory dataset-user guide. microsoft research

Zhou C, Yuan W, Wang J, Xu H, Jiang Y, Wang X, Wen QH, Zhang P (2020) Detecting suspected epidemic cases using trajectory big data. arXiv preprint arXiv:200400908

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem