- -

Strategies for the deployment of microclimate sensors in spaces housing collections

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Strategies for the deployment of microclimate sensors in spaces housing collections

Mostrar el registro completo del ítem

Frasca, F.; Verticchio, E.; Peiró-Vitoria, A.; Grinde, A.; Bile, A.; Chimenti, C.; Conati Barbaro, C.... (2022). Strategies for the deployment of microclimate sensors in spaces housing collections. Heritage Science. 10(1):1-17. https://doi.org/10.1186/s40494-022-00831-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/198610

Ficheros en el ítem

Metadatos del ítem

Título: Strategies for the deployment of microclimate sensors in spaces housing collections
Autor: Frasca, Francesca Verticchio, Elena Peiró-Vitoria, Andrea Grinde, Andreas Bile, Alessandro Chimenti, Claudio Conati Barbaro, Celia Favero, Gabriele Fazio, Eugenio García Diego, Fernando Juan Siani, Anna Maria
Entidad UPV: Universitat Politècnica de València. Facultad de Bellas Artes - Facultat de Belles Arts
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] The study of the microclimate is pivotal for the protection and conservation of cultural heritage. This paper describes specifc procedures aimed at the deployment of microclimate sensors in spaces housing collections ...[+]
Palabras clave: Microclimate , Sensor deployment , Artwork-related deployment , Artwork-envelope-related deployment , Preventive conservation , Decision making , Space housing collections , Museums
Derechos de uso: Reconocimiento (by)
Fuente:
Heritage Science. (eissn: 2050-7445 )
DOI: 10.1186/s40494-022-00831-1
Editorial:
BioMed Central
Versión del editor: https://doi.org/10.1186/s40494-022-00831-1
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/814624/EU
Agradecimientos:
This research was funded by the European Union's Horizon 2020 research and innovation program under grant agreement No.814624.
Tipo: Artículo

References

Frasca F, Verticchio E, Caratelli A, Bertolin C, Camuffo D, Siani AM. A comprehensive study of the microclimate-induced conservation risks in hypogeal sites: the mithraeum of the baths of Caracalla (Rome). Sensors. 2020;20:1–18. https://doi.org/10.3390/s20113310.

Verticchio E, Frasca F, Bertolin C, Siani AM. Climate-induced risk for the preservation of paper collections: comparative study among three historic libraries in Italy. Build Environ. 2021;206: 108394. https://doi.org/10.1016/j.buildenv.2021.108394.

WMO. Manual on the global observing system, vol. I. Geneva: World Meteorological Organisation; 2010. [+]
Frasca F, Verticchio E, Caratelli A, Bertolin C, Camuffo D, Siani AM. A comprehensive study of the microclimate-induced conservation risks in hypogeal sites: the mithraeum of the baths of Caracalla (Rome). Sensors. 2020;20:1–18. https://doi.org/10.3390/s20113310.

Verticchio E, Frasca F, Bertolin C, Siani AM. Climate-induced risk for the preservation of paper collections: comparative study among three historic libraries in Italy. Build Environ. 2021;206: 108394. https://doi.org/10.1016/j.buildenv.2021.108394.

WMO. Manual on the global observing system, vol. I. Geneva: World Meteorological Organisation; 2010.

EN 15758:2010. Conservation of cultural property —procedures and instruments for measuring temperatures of the air and the surfaces of objects. Brussel: European Committee for Standardization; 2010.

EN 16242:2012. Conservation of cultural heritage—procedures and instruments for measuring humidity in the air and moisture exchanges between air and cultural property. Brussels: European Committee for Standardization; 2012.

Camuffo D. Microclimate for cultural heritage: Measurement, risk assessment, conservation, restoration, and maintenance of indoor and outdoor monuments. 3rd ed. Amsterdam: Elsevier; 2019.

Nguyen L, Hu G, Spanos CJ. Efficient Sensor deployments for spatio-temporal environmental monitoring IEEE. IEEE Trans Syst Man Cybern Syst. 2018. https://doi.org/10.1109/TSMC.2018.2872041.

Yun J, Kim J. Deployment support for sensor networks in indoor climate monitoring. Int J Distrib Sens Netw. 2013. https://doi.org/10.1155/2013/875802.

Merello P, García-Diego FJ, Zarzo M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem Cent J. 2012;6:1–16. https://doi.org/10.1186/1752-153X-6-145.

Huijbregts Z, Schellen H, van Schijndel J, Ankersmit B. Modelling of heat and moisture induced strain to assess the impact of present and historical indoor climate conditions on mechanical degradation of a wooden cabinet. J Cult Herit. 2015;16:419–27. https://doi.org/10.1016/j.culher.2014.11.001.

Muñoz-González CM, León-Rodríguez AL, Navarro-Casas J. Air conditioning and passive environmental techniques in historic churches in mediterranean climate a proposed method to assess damage risk and thermal comfort pre-intervention simulation-based. Energy Build. 2016. https://doi.org/10.1016/j.enbuild.2016.08.078.

Silva HE, Coelho GBA, Henriques FMA. Climate monitoring in World heritage list buildings with low-cost data loggers: the case of the jerónimos monastery in lisbon (Portugal). J Build Eng Elsev. 2020;28:24–35. https://doi.org/10.1016/j.jobe.2019.101029.

Verticchio E, Frasca F, Cavalieri P, Teodonio L, Fugaro D, Siani AM. Conservation risks for paper collections induced by the microclimate in the repository of the Alessandrina library in Rome (Italy). Herit Sci. 2022;10:1–15. https://doi.org/10.1186/s40494-022-00714-5.

Peralta L, de Brito L, Gouveia B, de Sousa D, Alves C. Automatic monitoring and control of museums environment based on wireless sensor networks. Electron J Struct Eng. 2010. https://doi.org/10.56748/ejse.12901.

Agbota H, Mitchell JE, Odlyha M, Strlič M. Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors. 2014;14:8779–93. https://doi.org/10.3390/s140508779.

Visco G, Plattner SH, Fortini P, di Giovanni S, Sammartino MP. Microclimate monitoring in the carcer tullianum: temporal and spatial correlation and gradients evidenced by multivariate analysis; first campaign. Chem Cent J. 2012. https://doi.org/10.1186/1752-153X-6-S2-S11.

Aste N, Adhikari RS, Buzzetti M, DellaTorre S, Del Pero C, Huerto HE, et al. Microclimatic monitoring of the Duomo (Milan Cathedral): risks-based analysis for the conservation of its cultural heritage. Build Environ. 2019;148:240–57. https://doi.org/10.1016/j.buildenv.2018.11.015.

Becherini F, Bernardi A, di Tuccio MC, Vivarelli A, Pockelè L, de Grandi S, et al. Microclimatic monitoring for the investigation of the different state of conservation of the stucco statues of the longobard temple in Cividale del Friuli (Udine, Italy). J Cult Herit. 2016;18:375–9. https://doi.org/10.1016/j.culher.2015.07.001.

Lucero-Gómez P, Balliana E, Farinelli V, Salvini S, Signorelli L, Zendri E. Rethinking and evaluating the role of historical buildings in the preservation of fragile artworks: the case study of the Gallerie dell’Accademia in Venice. Eur Phys J Plus. 2022. https://doi.org/10.1140/epjp/s13360-021-02311-0.

Lucchi E, Dias Pereira L, Andreotti M, Malaguti R, Cennamo D, Calzolari M, et al. Development of a compatible, low cost and high accurate conservation remote sensing technology for the hygrothermal assessment of historic walls. Electronics. 2019;8:643. https://doi.org/10.3390/electronics8060643.

Caratelli A, Siani A, Casale GR, Paravicini A, Fiore KH, Camuffo D. Stucco panels of room VI in the Galleria Borghese (Rome): Physical-chemical analysis and microclimate characterization. Energy Build. 2013;61:133–9. https://doi.org/10.1016/j.enbuild.2013.02.013.

Siani AM, Frasca F, di Michele M, Bonacquisti V, Fazio E. Cluster analysis of microclimate data to optimize the number of sensors for the assessment of indoor environment within museums. Environ Sci Pollut Res. 2018;25:28787–97. https://doi.org/10.1007/s11356-018-2021-3.

Ramírez S, Zarzo M, Perles A. A methodology for discriminant time series analysis applied to microclimate monitoring of Fresco paintings. Sensors. 2021. https://doi.org/10.3390/s21020436.

Frasca F, Verticchio E, Merello P, Zarzo M, Grinde A, Fazio E, et al. A Statistical approach for a-posteriori deployment of microclimate sensors in museums: a case study. Sensors. 2022;22:4547. https://doi.org/10.3390/s22124547.

Perles A, Fuster-López L, García-Diego FJ, Peiró-Vitoria A, García-Castillo AM, Andersen CK, et al. CollectionCare: an affordable service for the preventive conservation monitoring of single cultural artefacts during display, storage, handling and transport. IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/949/1/012026.

Bichlmair S, Holl K, Kilian R. The moving fluctuation range—a new analytical method for evaluation of climate fluctuations in historic buildings. In: Ashley-Smith J, Burmester A, Eibl M, editors. Climate for Collections Standards and uncertainties. Munich: Doerner Institut; 2013.

Lee J, Kim J, Ahn J, Woo W. Context-aware risk management for architectural heritage using historic building information modeling and virtual reality. J Cult Herit. 2019;38:242–52. https://doi.org/10.1016/j.culher.2018.12.010.

EN 15757 2010. Conservation of cultural property—specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. Brussels: European Committee for Standardization; 2010.

American Society of Heating refrigerating and air—conditioning engineers, editor. Chapter 24, Museums, galleries, archives, and libraries. ASHRAE Handbook—HVAC applications. GA, USA: Atlanta; 2019.

García-Diego FJ, Verticchio E, Beltrán P, Siani A. Assessment of the minimum sampling frequency to avoid measurement redundancy in microclimate field surveys in museum buildings. Sensors. 2016;16(8):1291. https://doi.org/10.3390/s16081291.

EN 16095. Conservation of cultural property Condition recording for movable cultural heritage. Brussels: European Committee for Standardization; 2012.

Raffler S, Bichlmair S, Kilian R. Mounting of sensors on surfaces in historic buildings. Energy Build. 2015;95:92–7. https://doi.org/10.1016/j.enbuild.2014.11.054.

ANSI ASHRAE Standard 90 1. Energy standard for building except low-rise residential buildings. Atlanta: Elaviser; 2007.

Frasca F, Siani AM, Casale GR, Pedone M, Bratasz L, Strojecki M, Mleczkowska A. Assessment of indoor climate of Mogiła Abbey in Kraków (Poland) and the application of the analogues method to predict microclimate indoor conditions. Environ Sci Pollut Res. 2017;24:13895–907. https://doi.org/10.1007/s11356-016-6504-9.

Zarzo M, Fernández-Navajas A, García-Diego FJ. Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 2011;11:8685–710. https://doi.org/10.3390/s110908685.

Dunia R, Qin SJ, Edgar TF, McAvoy TJ. Use of principal component analysis for sensor fault identification. Comput Chem Eng. 1996;20:S713–8. https://doi.org/10.1016/0098-1354(96)00128-7.

Govender P, Sivakumar V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmos Pollut Res. 2020;11:40–56. https://doi.org/10.1016/j.apr.2019.09.009.

Bile A, Tari H, Grinde A, Frasca F, Siani AM, Fazio E. Novel model based on artificial neural networks to predict short-term temperature evolution in Museum environment. Sensors. 2022. https://doi.org/10.3390/s22020615.

Sturaro G, Camuffo D, Brimblecombe P, van Grieken R, Busse HJ, Bernardi A, et al. Multidisciplinary environmental monitoring at the Kunsthistorisches Museum, Vienna. J Trace Microprobe Tech. 2003;21:273–94. https://doi.org/10.1081/TMA-120020262.

Verticchio E, Frasca F, Garcìa-Diego FJ, Siani AM. Investigation on the use of passive microclimate frames in view of the climate change scenario. Climate. 2019;7:1–14. https://doi.org/10.3390/cli7080098.

Frasca F, Caratelli A, Siani AM. The capability of capacitive sensors in the monitoring relative humidity in hypogeum environments. IOP Conf Ser Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/364/1/012093.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem