- -

Strategies for the deployment of microclimate sensors in spaces housing collections

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Strategies for the deployment of microclimate sensors in spaces housing collections

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Frasca, Francesca es_ES
dc.contributor.author Verticchio, Elena es_ES
dc.contributor.author Peiró-Vitoria, Andrea es_ES
dc.contributor.author Grinde, Andreas es_ES
dc.contributor.author Bile, Alessandro es_ES
dc.contributor.author Chimenti, Claudio es_ES
dc.contributor.author Conati Barbaro, Celia es_ES
dc.contributor.author Favero, Gabriele es_ES
dc.contributor.author Fazio, Eugenio es_ES
dc.contributor.author García Diego, Fernando Juan es_ES
dc.contributor.author Siani, Anna Maria es_ES
dc.date.accessioned 2023-10-23T18:01:18Z
dc.date.available 2023-10-23T18:01:18Z
dc.date.issued 2022-12-16 es_ES
dc.identifier.uri http://hdl.handle.net/10251/198610
dc.description.abstract [EN] The study of the microclimate is pivotal for the protection and conservation of cultural heritage. This paper describes specifc procedures aimed at the deployment of microclimate sensors in spaces housing collections (e.g., museums) under diferent scenarios. The decision making involves a multidisciplinary discussion among museum manager, con¿ servator and conservation scientist and implies fve steps. Since the sensor¿s deployment depends on the number of available sensors, we have identifed two possible circumstances: (a) artwork-related deployment (i.e., there are as many sensors as the number of artworks) and (b) artwork-envelope-related deployment (i.e., the number of available sensors is less than the number of artworks). The former circumstance is advisable when the artwork is often moved from a museum to another one. The latter circumstance is usually the case of permanent collections, and, according to the Museum Scenario (MS), the related procedures can be further subdivided into basic (MSI and MSII) and advanced (MSIII and MSIV). Advanced procedures are preferable over basic procedures when several time series of microcli¿ mate data have been collected for at least one calendar year in several sampling points. All these procedures make it possible to design where to deploy sensors both in the case of an initial deployment and of optimisation of already installed sensors. es_ES
dc.description.sponsorship This research was funded by the European Union's Horizon 2020 research and innovation program under grant agreement No.814624. es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof Heritage Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microclimate es_ES
dc.subject Sensor deployment es_ES
dc.subject Artwork-related deployment es_ES
dc.subject Artwork-envelope-related deployment es_ES
dc.subject Preventive conservation es_ES
dc.subject Decision making es_ES
dc.subject Space housing collections es_ES
dc.subject Museums es_ES
dc.subject.classification DIBUJO es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Strategies for the deployment of microclimate sensors in spaces housing collections es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40494-022-00831-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/814624/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Bellas Artes - Facultat de Belles Arts es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Frasca, F.; Verticchio, E.; Peiró-Vitoria, A.; Grinde, A.; Bile, A.; Chimenti, C.; Conati Barbaro, C.... (2022). Strategies for the deployment of microclimate sensors in spaces housing collections. Heritage Science. 10(1):1-17. https://doi.org/10.1186/s40494-022-00831-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40494-022-00831-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2050-7445 es_ES
dc.relation.pasarela S\489718 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Frasca F, Verticchio E, Caratelli A, Bertolin C, Camuffo D, Siani AM. A comprehensive study of the microclimate-induced conservation risks in hypogeal sites: the mithraeum of the baths of Caracalla (Rome). Sensors. 2020;20:1–18. https://doi.org/10.3390/s20113310. es_ES
dc.description.references Verticchio E, Frasca F, Bertolin C, Siani AM. Climate-induced risk for the preservation of paper collections: comparative study among three historic libraries in Italy. Build Environ. 2021;206: 108394. https://doi.org/10.1016/j.buildenv.2021.108394. es_ES
dc.description.references WMO. Manual on the global observing system, vol. I. Geneva: World Meteorological Organisation; 2010. es_ES
dc.description.references EN 15758:2010. Conservation of cultural property —procedures and instruments for measuring temperatures of the air and the surfaces of objects. Brussel: European Committee for Standardization; 2010. es_ES
dc.description.references EN 16242:2012. Conservation of cultural heritage—procedures and instruments for measuring humidity in the air and moisture exchanges between air and cultural property. Brussels: European Committee for Standardization; 2012. es_ES
dc.description.references Camuffo D. Microclimate for cultural heritage: Measurement, risk assessment, conservation, restoration, and maintenance of indoor and outdoor monuments. 3rd ed. Amsterdam: Elsevier; 2019. es_ES
dc.description.references Nguyen L, Hu G, Spanos CJ. Efficient Sensor deployments for spatio-temporal environmental monitoring IEEE. IEEE Trans Syst Man Cybern Syst. 2018. https://doi.org/10.1109/TSMC.2018.2872041. es_ES
dc.description.references Yun J, Kim J. Deployment support for sensor networks in indoor climate monitoring. Int J Distrib Sens Netw. 2013. https://doi.org/10.1155/2013/875802. es_ES
dc.description.references Merello P, García-Diego FJ, Zarzo M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem Cent J. 2012;6:1–16. https://doi.org/10.1186/1752-153X-6-145. es_ES
dc.description.references Huijbregts Z, Schellen H, van Schijndel J, Ankersmit B. Modelling of heat and moisture induced strain to assess the impact of present and historical indoor climate conditions on mechanical degradation of a wooden cabinet. J Cult Herit. 2015;16:419–27. https://doi.org/10.1016/j.culher.2014.11.001. es_ES
dc.description.references Muñoz-González CM, León-Rodríguez AL, Navarro-Casas J. Air conditioning and passive environmental techniques in historic churches in mediterranean climate a proposed method to assess damage risk and thermal comfort pre-intervention simulation-based. Energy Build. 2016. https://doi.org/10.1016/j.enbuild.2016.08.078. es_ES
dc.description.references Silva HE, Coelho GBA, Henriques FMA. Climate monitoring in World heritage list buildings with low-cost data loggers: the case of the jerónimos monastery in lisbon (Portugal). J Build Eng Elsev. 2020;28:24–35. https://doi.org/10.1016/j.jobe.2019.101029. es_ES
dc.description.references Verticchio E, Frasca F, Cavalieri P, Teodonio L, Fugaro D, Siani AM. Conservation risks for paper collections induced by the microclimate in the repository of the Alessandrina library in Rome (Italy). Herit Sci. 2022;10:1–15. https://doi.org/10.1186/s40494-022-00714-5. es_ES
dc.description.references Peralta L, de Brito L, Gouveia B, de Sousa D, Alves C. Automatic monitoring and control of museums environment based on wireless sensor networks. Electron J Struct Eng. 2010. https://doi.org/10.56748/ejse.12901. es_ES
dc.description.references Agbota H, Mitchell JE, Odlyha M, Strlič M. Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors. 2014;14:8779–93. https://doi.org/10.3390/s140508779. es_ES
dc.description.references Visco G, Plattner SH, Fortini P, di Giovanni S, Sammartino MP. Microclimate monitoring in the carcer tullianum: temporal and spatial correlation and gradients evidenced by multivariate analysis; first campaign. Chem Cent J. 2012. https://doi.org/10.1186/1752-153X-6-S2-S11. es_ES
dc.description.references Aste N, Adhikari RS, Buzzetti M, DellaTorre S, Del Pero C, Huerto HE, et al. Microclimatic monitoring of the Duomo (Milan Cathedral): risks-based analysis for the conservation of its cultural heritage. Build Environ. 2019;148:240–57. https://doi.org/10.1016/j.buildenv.2018.11.015. es_ES
dc.description.references Becherini F, Bernardi A, di Tuccio MC, Vivarelli A, Pockelè L, de Grandi S, et al. Microclimatic monitoring for the investigation of the different state of conservation of the stucco statues of the longobard temple in Cividale del Friuli (Udine, Italy). J Cult Herit. 2016;18:375–9. https://doi.org/10.1016/j.culher.2015.07.001. es_ES
dc.description.references Lucero-Gómez P, Balliana E, Farinelli V, Salvini S, Signorelli L, Zendri E. Rethinking and evaluating the role of historical buildings in the preservation of fragile artworks: the case study of the Gallerie dell’Accademia in Venice. Eur Phys J Plus. 2022. https://doi.org/10.1140/epjp/s13360-021-02311-0. es_ES
dc.description.references Lucchi E, Dias Pereira L, Andreotti M, Malaguti R, Cennamo D, Calzolari M, et al. Development of a compatible, low cost and high accurate conservation remote sensing technology for the hygrothermal assessment of historic walls. Electronics. 2019;8:643. https://doi.org/10.3390/electronics8060643. es_ES
dc.description.references Caratelli A, Siani A, Casale GR, Paravicini A, Fiore KH, Camuffo D. Stucco panels of room VI in the Galleria Borghese (Rome): Physical-chemical analysis and microclimate characterization. Energy Build. 2013;61:133–9. https://doi.org/10.1016/j.enbuild.2013.02.013. es_ES
dc.description.references Siani AM, Frasca F, di Michele M, Bonacquisti V, Fazio E. Cluster analysis of microclimate data to optimize the number of sensors for the assessment of indoor environment within museums. Environ Sci Pollut Res. 2018;25:28787–97. https://doi.org/10.1007/s11356-018-2021-3. es_ES
dc.description.references Ramírez S, Zarzo M, Perles A. A methodology for discriminant time series analysis applied to microclimate monitoring of Fresco paintings. Sensors. 2021. https://doi.org/10.3390/s21020436. es_ES
dc.description.references Frasca F, Verticchio E, Merello P, Zarzo M, Grinde A, Fazio E, et al. A Statistical approach for a-posteriori deployment of microclimate sensors in museums: a case study. Sensors. 2022;22:4547. https://doi.org/10.3390/s22124547. es_ES
dc.description.references Perles A, Fuster-López L, García-Diego FJ, Peiró-Vitoria A, García-Castillo AM, Andersen CK, et al. CollectionCare: an affordable service for the preventive conservation monitoring of single cultural artefacts during display, storage, handling and transport. IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/949/1/012026. es_ES
dc.description.references Bichlmair S, Holl K, Kilian R. The moving fluctuation range—a new analytical method for evaluation of climate fluctuations in historic buildings. In: Ashley-Smith J, Burmester A, Eibl M, editors. Climate for Collections Standards and uncertainties. Munich: Doerner Institut; 2013. es_ES
dc.description.references Lee J, Kim J, Ahn J, Woo W. Context-aware risk management for architectural heritage using historic building information modeling and virtual reality. J Cult Herit. 2019;38:242–52. https://doi.org/10.1016/j.culher.2018.12.010. es_ES
dc.description.references EN 15757 2010. Conservation of cultural property—specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. Brussels: European Committee for Standardization; 2010. es_ES
dc.description.references American Society of Heating refrigerating and air—conditioning engineers, editor. Chapter 24, Museums, galleries, archives, and libraries. ASHRAE Handbook—HVAC applications. GA, USA: Atlanta; 2019. es_ES
dc.description.references García-Diego FJ, Verticchio E, Beltrán P, Siani A. Assessment of the minimum sampling frequency to avoid measurement redundancy in microclimate field surveys in museum buildings. Sensors. 2016;16(8):1291. https://doi.org/10.3390/s16081291. es_ES
dc.description.references EN 16095. Conservation of cultural property Condition recording for movable cultural heritage. Brussels: European Committee for Standardization; 2012. es_ES
dc.description.references Raffler S, Bichlmair S, Kilian R. Mounting of sensors on surfaces in historic buildings. Energy Build. 2015;95:92–7. https://doi.org/10.1016/j.enbuild.2014.11.054. es_ES
dc.description.references ANSI ASHRAE Standard 90 1. Energy standard for building except low-rise residential buildings. Atlanta: Elaviser; 2007. es_ES
dc.description.references Frasca F, Siani AM, Casale GR, Pedone M, Bratasz L, Strojecki M, Mleczkowska A. Assessment of indoor climate of Mogiła Abbey in Kraków (Poland) and the application of the analogues method to predict microclimate indoor conditions. Environ Sci Pollut Res. 2017;24:13895–907. https://doi.org/10.1007/s11356-016-6504-9. es_ES
dc.description.references Zarzo M, Fernández-Navajas A, García-Diego FJ. Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 2011;11:8685–710. https://doi.org/10.3390/s110908685. es_ES
dc.description.references Dunia R, Qin SJ, Edgar TF, McAvoy TJ. Use of principal component analysis for sensor fault identification. Comput Chem Eng. 1996;20:S713–8. https://doi.org/10.1016/0098-1354(96)00128-7. es_ES
dc.description.references Govender P, Sivakumar V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmos Pollut Res. 2020;11:40–56. https://doi.org/10.1016/j.apr.2019.09.009. es_ES
dc.description.references Bile A, Tari H, Grinde A, Frasca F, Siani AM, Fazio E. Novel model based on artificial neural networks to predict short-term temperature evolution in Museum environment. Sensors. 2022. https://doi.org/10.3390/s22020615. es_ES
dc.description.references Sturaro G, Camuffo D, Brimblecombe P, van Grieken R, Busse HJ, Bernardi A, et al. Multidisciplinary environmental monitoring at the Kunsthistorisches Museum, Vienna. J Trace Microprobe Tech. 2003;21:273–94. https://doi.org/10.1081/TMA-120020262. es_ES
dc.description.references Verticchio E, Frasca F, Garcìa-Diego FJ, Siani AM. Investigation on the use of passive microclimate frames in view of the climate change scenario. Climate. 2019;7:1–14. https://doi.org/10.3390/cli7080098. es_ES
dc.description.references Frasca F, Caratelli A, Siani AM. The capability of capacitive sensors in the monitoring relative humidity in hypogeum environments. IOP Conf Ser Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/364/1/012093. es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem