Resumen:
|
[ES] La monitorización de la ejecución de un plan es crucial para un agente autónomo que realiza su labor en un entorno dinámico, pues influye en su capacidad de reaccionar ante los cambios. Mientras ejecuta su plan puede ...[+]
[ES] La monitorización de la ejecución de un plan es crucial para un agente autónomo que realiza su labor en un entorno dinámico, pues influye en su capacidad de reaccionar ante los cambios. Mientras ejecuta su plan puede sufrir un fallo y, en su esfuerzo por solucionarlo, puede interferir sin saberlo con otros agentes que operan en su mismo entorno. Por otra parte, para actuar racionalmente es necesario que el agente sea consciente del contexto y pueda recopilar y ampliar su información a partir de lo que percibe para poder compensar su conocimiento previo parcial o incorrecto del problema y lograr el mejor resultado posible ante las nuevas situaciones que aparecen.
El trabajo realizado en esta tesis permite a los agentes autónomos ejecutar sus planes en un entorno dinámico y adaptarse a eventos inesperados y circunstancias desconocidas. Pueden utilizar su percepción del contexto para proporcionar respuestas deliberativas conscientes y ser capaces así de aprovechar las oportunidades que surgen o reparar los fallos sin perturbar a otros agentes. Este trabajo se centra en el desarrollo de una arquitectura independiente del dominio capaz de manejar las necesidades de agentes con este tipo de comportamiento autónomo. Los tres pilares de la arquitectura propuesta los forman el sistema inteligente para la simulación de la ejecución en entornos dinámicos, la adquisición de conocimiento consciente del contexto para ampliar la base de datos del agente y la reparación de planes ante fallos u oportunidades tratando de interferir lo mínimo con los planes de otros agentes.
El sistema inteligente de simulación de la ejecución permite al agente representar el plan en una línea de tiempo, actualizar periódicamente su estado interno con información del mundo real y disparar nuevos eventos en momentos concretos. Los eventos se procesan en el contexto del plan; si se detecta un error, el simulador reformula el problema de planificación, invoca de nuevo al planificador y reanuda la ejecución. El simulador es una aplicación de consola y ofrece una interfaz gráfica diseñada específicamente para una aplicación inteligente de turismo.
El módulo de adquisición de conocimiento sensible al contexto utiliza operaciones semánticas para aumentar dinámicamente la lista predefinida de tipos de objetos de la tarea de planificación con nuevos tipos relevantes. Esto permite que el agente sea consciente de su entorno, enriquezca el modelo de su tarea y pueda razonar a partir de un conocimiento incompleto. Con todo esto se consigue potenciar la autonomía del sistema y la conciencia del contexto.
La novedosa estrategia de reparación de planes le permite a un agente reparar su plan al detectar un fallo de manera responsable con el resto de agentes que comparten su mismo entorno de ejecución. El agente utiliza una nueva métrica, el compromiso del plan, como función heurística para guiar la búsqueda hacia un plan solución comprometido con el plan original, en el sentido de que se trata de respetar los compromisos adquiridos con otros agentes al mismo tiempo que se alcanzan los objetivos originales. En consecuencia, la comunidad de agentes sufrirá menos fallos por cambios bruscos en el entorno o requerirá menos tiempo para ejecutar las acciones correctoras si el fallo es inevitable.
Estos tres módulos han sido desarrollados y evaluados en varias aplicaciones como un asistente turístico, una agencia de reparación de electrodomésticos y un asistente del hogar.
[-]
[CA] El monitoratge de l'execució d'un pla és crucial per a un agent autònom que realitza la seua labor en un entorn dinàmic, perquè influeix en la seua capacitat de reaccionar davant els canvis. Mentre executa el seu pla ...[+]
[CA] El monitoratge de l'execució d'un pla és crucial per a un agent autònom que realitza la seua labor en un entorn dinàmic, perquè influeix en la seua capacitat de reaccionar davant els canvis. Mentre executa el seu pla pot patir una fallada i, en el seu esforç per solucionar-lo, pot interferir sense saber-ho amb altres agents que operen en el seu mateix entorn. D'altra banda, per a actuar racionalment és necessari que l'agent siga conscient del context i puga recopilar i ampliar la seua informació a partir del que percep per a poder compensar el seu coneixement previ parcial o incorrecte del problema i aconseguir el millor resultat possible davant les noves situacions que apareixen.
El treball realitzat en aquesta tesi permet als agents autònoms executar els seus plans en un entorn dinàmic i adaptar-se a esdeveniments inesperats i circumstàncies desconegudes. Poden utilitzar la seua percepció del context per a proporcionar respostes deliberatives conscients i ser capaces així d'aprofitar les oportunitats que sorgeixen o reparar les fallades sense pertorbar a altres agents. Aquest treball se centra en el desenvolupament d'una arquitectura independent del domini capaç de manejar les necessitats d'agents amb aquesta mena de comportament autònom. Els tres pilars de l'arquitectura proposada els formen el sistema intel·ligent per a la simulació de l'execució en entorns dinàmics, l'adquisició de coneixement conscient del context per a ampliar la base de dades de l'agent i la reparació de plans davant fallades o oportunitats tractant d'interferir el mínim amb els plans d'altres agents.
El sistema intel·ligent de simulació de l'execució permet a l'agent representar el pla en una línia de temps, actualitzar periòdicament el seu estat intern amb informació del món real i disparar nous esdeveniments en moments concrets. Els esdeveniments es processen en el context del pla; si es detecta un error, el simulador reformula el problema de planificació, invoca de nou al planificador i reprén l'execució. El simulador és una aplicació de consola i ofereix una interfície gràfica dissenyada específicament per a una aplicació intel·ligent de turisme.
El mòdul d'adquisició de coneixement sensible al context utilitza operacions semàntiques per a augmentar dinàmicament la llista predefinida de tipus d'objectes de la tasca de planificació amb nous tipus rellevants. Això permet que l'agent siga conscient del seu entorn, enriquisca el model de la seua tasca i puga raonar a partir d'un coneixement incomplet. Amb tot això s'aconsegueix potenciar l'autonomia del sistema i la consciència del context.
La nova estratègia de reparació de plans li permet a un agent reparar el seu pla en detectar una fallada de manera responsable amb la resta d'agents que comparteixen el seu mateix entorn d'execució. L'agent utilitza una nova mètrica, el compromís del pla, com a funció heurística per a guiar la cerca cap a un pla solució compromés amb el pla original, en el sentit que es tracta de respectar els compromisos adquirits amb altres agents al mateix temps que s'aconsegueixen els objectius originals. En conseqüència, la comunitat d'agents patirà menys fallades per canvis bruscos en l'entorn o requerirà menys temps per a executar les accions correctores si la fallada és inevitable.
Aquests tres mòduls han sigut desenvolupats i avaluats en diverses aplicacions com un assistent turístic, una agència de reparació d'electrodomèstics i un assistent de la llar.
[-]
[EN] Execution Monitoring is crucial for the success of an autonomous agent executing a plan in a dynamic environment as it influences its ability to react to changes. While executing its plan in a dynamic world, it may ...[+]
[EN] Execution Monitoring is crucial for the success of an autonomous agent executing a plan in a dynamic environment as it influences its ability to react to changes. While executing its plan in a dynamic world, it may suffer a failure and, in its endeavour to fix the problem, it may unknowingly disrupt other agents operating in the same environment. Additionally, being rational requires the agent to be context-aware, gather information and extend what is known from what is perceived to compensate for partial or incorrect prior knowledge and achieve the best possible outcome in various novel situations.
The work carried out in this PhD thesis allows the autonomous agents executing a plan in a dynamic environment to adapt to unexpected events and unfamiliar circumstances, utilise their perception of context and provide context-aware deliberative responses for seizing an opportunity or repairing a failure without disrupting other agents. This work is focused on developing a domain-independent architecture capable of handling the requirements of such autonomous behaviour. The architecture pillars are the intelligent system for execution simulation in a dynamic environment, the context-aware knowledge acquisition for planning applications and the plan commitment repair.
The intelligent system for execution simulation in a dynamic environment allows the agent to transform the plan into a timeline, periodically update its internal state with real-world information and create timed events. Events are processed in the context of the plan; if a failure occurs, the simulator reformulates the planning problem, reinvokes a planner and resumes the execution. The simulator is a console application and has a GUI designed specifically for smart tourism.
The context-aware knowledge acquisition module utilises semantic operations to dynamically augment the predefined list of object types of the planning task with relevant new object types. This allows the agent to be context-aware of the environment and the task and reason with incomplete knowledge, boosting the system's autonomy and context-awareness.
The novel plan commitment repair strategy among multiple agents sharing the same execution environment allows the agent to repair its plan responsibly when a failure is detected. The agent utilises a new metric, plan commitment, as a heuristic to guide the search for the most committed repair plan to the original plan from the perspective of commitments made to other agents whilst achieving the original goals. Consequently, the community of agents will suffer fewer failures due to the sudden changes or will have less lost time if the failure is inevitable.
All these developed modules were investigated and evaluated in several applications, such as a tourist assistant, a kitchen appliance repair agency and a living home assistant.
[-]
|