Mostrar el registro sencillo del ítem
dc.contributor.author | Benítez, Ignacio | es_ES |
dc.contributor.author | Diez, José-Luís | es_ES |
dc.date.accessioned | 2023-10-25T18:02:40Z | |
dc.date.available | 2023-10-25T18:02:40Z | |
dc.date.issued | 2022-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/198814 | |
dc.description.abstract | [EN] Load profiles of energy consumption from smart meters are becoming more and more available, and the amount of data to analyse is huge. In order to automate this analysis, the application of state-of-the-art data mining techniques for time series analysis is reviewed. In particular, the use of dynamic clustering techniques to obtain and visualise temporal patterns characterising the users of electrical energy is deeply studied. The performed review can be used as a guide for those interested in the automatic analysis and groups of behaviour detection within load profile databases. Additionally, a selection of dynamic clustering algorithms have been implemented and the performances compared using an available electric energy consumption load profile database. The results allow experts to easily evaluate how users consume energy, to assess trends and to predict future scenarios. | es_ES |
dc.description.sponsorship | The data analysed has been facilitated by the Spanish Distributor Iberdrola Electrical Distribution S.A. as part of the research project GAD (Active Management of the Demand), national project by DEVISE 2010 funded by the INGENIIO 2010 program and the CDTI (Centre for Industrial Technology Development), Business Public Entity dependent of the Ministry of Economy and Competitiveness of the Government of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Time series analysis | es_ES |
dc.subject | Dynamic clustering | es_ES |
dc.subject | User load profiles | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Automated Detection of Electric Energy Consumption Load Profile Patterns | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en15062176 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Benítez, I.; Diez, J. (2022). Automated Detection of Electric Energy Consumption Load Profile Patterns. Energies. 15(6):1-26. https://doi.org/10.3390/en15062176 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en15062176 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 26 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\461805 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |
upv.costeAPC | 1250 | es_ES |