Mostrar el registro sencillo del ítem
dc.contributor.author | Puchalt-Rodríguez, Joan Carles | es_ES |
dc.contributor.author | González-Rojo, José F. | es_ES |
dc.contributor.author | Gómez-Escribano, Ana Pilar | es_ES |
dc.contributor.author | Vázquez-Manrique, Rafael P. | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2023-10-30T19:03:34Z | |
dc.date.available | 2023-10-30T19:03:34Z | |
dc.date.issued | 2022-02-02 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199017 | |
dc.description.abstract | [EN] Data from manual healthspan assays of the nematode Caenorhabditis elegans (C. elegans) can be complex to quantify. The first attempts to quantify motor performance were done manually, using the so-called thrashing or body bends assay. Some laboratories have automated these approaches using methods that help substantially to quantify these characteristic movements in small well plates. Even so, it is sometimes difficult to find differences in motor behaviour between strains, and/or between treated vs untreated worms. For this reason, we present here a new automated method that increases the resolution flexibility, in order to capture more movement details in large standard Petri dishes, in such way that those movements are less restricted. This method is based on a Cartesian robot, which enables high-resolution images capture in standard Petri dishes. Several cameras mounted strategically on the robot and working with different fields of view, capture the required C. elegans visual information. We have performed a locomotion-based healthspan experiment with several mutant strains, and we have been able to detect statistically significant differences between two strains that show very similar movement patterns. | es_ES |
dc.description.sponsorship | This work was supported by the research agency of the Spanish Ministry of Science and Innovation under Grant RTI2018-094312-B-I00 (European FEDER funds). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Healthspan | es_ES |
dc.subject | C. elegans | es_ES |
dc.subject | Tracking | es_ES |
dc.subject | Standard Petri dishes | es_ES |
dc.subject | Cartesian robot | es_ES |
dc.subject | Automated | es_ES |
dc.subject | Multiview | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-022-05823-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Puchalt-Rodríguez, JC.; González-Rojo, JF.; Gómez-Escribano, AP.; Vázquez-Manrique, RP.; Sánchez Salmerón, AJ. (2022). Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Scientific Reports. 12(1):1-11. https://doi.org/10.1038/s41598-022-05823-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-022-05823-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 35110654 | es_ES |
dc.identifier.pmcid | PMC8810772 | es_ES |
dc.relation.pasarela | S\458816 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974). | es_ES |
dc.description.references | Keith, S. A., Amrit, F. R. G., Ratnappan, R. & Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476–486. https://doi.org/10.1016/j.ymeth.2014.04.003 (2014). | es_ES |
dc.description.references | Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015). | es_ES |
dc.description.references | Jushaj, A. et al. Optimized criteria for locomotion-based healthspan evaluation in C. elegans using the WorMotel system. PLoS ONE 15, e0229583 (2020). | es_ES |
dc.description.references | Rollins, J. A., Howard, A. C., Dobbins, S. K., Washburn, E. H. & Rogers, A. N. Assessing health span in Caenorhabditis elegans: Lessons from short-lived mutants. J. Gerontol. Ser. A 72, 473–480. https://doi.org/10.1093/gerona/glw248 (2017). | es_ES |
dc.description.references | Buckingham, S. D. & Sattelle, D. B. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 10, 84. https://doi.org/10.1186/1471-2202-10-84 (2009). | es_ES |
dc.description.references | Gómez-Escribano, A. P. et al. Synergistic activation of ampk prevents from polyglutamine-induced toxicity in Caenorhabditis elegans. Pharmacol. Res. 161, 105105. https://doi.org/10.1016/j.phrs.2020.105105 (2020). | es_ES |
dc.description.references | Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS ONE 7, e33483. https://doi.org/10.1371/journal.pone.0033483 (2012). | es_ES |
dc.description.references | Puckering, T. et al. Automated Wormscan. F1000Research 6, 192. https://doi.org/10.12688/f1000research.10767.2 (2017). | es_ES |
dc.description.references | Stroustrup, N. et al. The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665–70. https://doi.org/10.1038/nmeth.2475 (2013). | es_ES |
dc.description.references | Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592. https://doi.org/10.1038/nmeth.1625 (2011). | es_ES |
dc.description.references | Pitt, J. N. et al. WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 41, 961–973. https://doi.org/10.1007/s11357-019-00124-9 (2019). | es_ES |
dc.description.references | Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 6, e26652. https://doi.org/10.7554/eLife.26652 (2017). | es_ES |
dc.description.references | Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. Mech. Ageing Dev. 126, 139–145. https://doi.org/10.1016/j.mad.2004.09.010 (2005). | es_ES |
dc.description.references | Le, K. N. et al. An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun. Biol. 3, 297. https://doi.org/10.1038/s42003-020-1013-2 (2020). | es_ES |
dc.description.references | Hsu, A. L., Feng, Z., Hsieh, M. Y. & Xu, X. Z. S. Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiol. Aging 30, 1498–1503. https://doi.org/10.1016/j.neurobiolaging.2007.12.007 (2009). | es_ES |
dc.description.references | Chung, K. et al. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip 11, 3689–3697. https://doi.org/10.1039/c1lc20400a (2011). | es_ES |
dc.description.references | Gupta, B. P. & Rezai, P. Microfluidic approaches for manipulating, imaging, and screening C. elegans. Micromachines 7, 123 (2016). | es_ES |
dc.description.references | Lange, D., Storment, C. W., Conley, C. A. & Kovacs, G. T. A. A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space. Sens. Actuators B Chem. 107, 904–914. https://doi.org/10.1016/j.snb.2004.12.039 (2005). | es_ES |
dc.description.references | Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M. F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. 104, 13891–13895. https://doi.org/10.1073/pnas.0706513104 (2007). | es_ES |
dc.description.references | Lockery, S. R. et al. Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143. https://doi.org/10.1152/jn.91327.2007 (2008). | es_ES |
dc.description.references | Park, S. et al. Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3, 1–5. https://doi.org/10.1371/journal.pone.0002550 (2008). | es_ES |
dc.description.references | Rahman, M. et al. NemaLife: A structured microfluidic culture device optimized for aging studies in crawling C. elegans. BioRxiv.https://doi.org/10.1101/675827 (2019). | es_ES |
dc.description.references | Rahman, M. et al. NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci. Rep. 10, 16190. https://doi.org/10.1038/s41598-020-73002-6 (2020). | es_ES |
dc.description.references | Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard Petri plates. PLoS ONE 14, e0215548 (2019). | es_ES |
dc.description.references | Gómez-Escribano, A. P. et al. Multiple hormonal signalling pathways function cell-nonautonomously to control protein homeostasis in Caenorhabditis elegans. BioRxiv. https://doi.org/10.1101/551580 (2019). | es_ES |
dc.description.references | Frøkjær-Jensen, C. Transposon-Assisted Genetic Engineering with Mos1-Mediated Single-Copy Insertion (MosSCI) BT–C. elegans: Methods and Applications 49–58 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-2842-2_5. | es_ES |
dc.description.references | Chen, B., Liu, Q., Ge, Q., Xie, J. & Wang, Z.-W. UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr. Biol. 17, 1334–1339. https://doi.org/10.1016/j.cub.2007.06.060 (2007). | es_ES |
dc.description.references | Puchalt, J. C. et al. Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Sci. Rep. 10, 8729. https://doi.org/10.1038/s41598-020-65619-4 (2020). | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
upv.costeAPC | 1790 | es_ES |