- -

Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Puchalt-Rodríguez, Joan Carles es_ES
dc.contributor.author González-Rojo, José F. es_ES
dc.contributor.author Gómez-Escribano, Ana Pilar es_ES
dc.contributor.author Vázquez-Manrique, Rafael P. es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.date.accessioned 2023-10-30T19:03:34Z
dc.date.available 2023-10-30T19:03:34Z
dc.date.issued 2022-02-02 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199017
dc.description.abstract [EN] Data from manual healthspan assays of the nematode Caenorhabditis elegans (C. elegans) can be complex to quantify. The first attempts to quantify motor performance were done manually, using the so-called thrashing or body bends assay. Some laboratories have automated these approaches using methods that help substantially to quantify these characteristic movements in small well plates. Even so, it is sometimes difficult to find differences in motor behaviour between strains, and/or between treated vs untreated worms. For this reason, we present here a new automated method that increases the resolution flexibility, in order to capture more movement details in large standard Petri dishes, in such way that those movements are less restricted. This method is based on a Cartesian robot, which enables high-resolution images capture in standard Petri dishes. Several cameras mounted strategically on the robot and working with different fields of view, capture the required C. elegans visual information. We have performed a locomotion-based healthspan experiment with several mutant strains, and we have been able to detect statistically significant differences between two strains that show very similar movement patterns. es_ES
dc.description.sponsorship This work was supported by the research agency of the Spanish Ministry of Science and Innovation under Grant RTI2018-094312-B-I00 (European FEDER funds). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Healthspan es_ES
dc.subject C. elegans es_ES
dc.subject Tracking es_ES
dc.subject Standard Petri dishes es_ES
dc.subject Cartesian robot es_ES
dc.subject Automated es_ES
dc.subject Multiview es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-05823-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Puchalt-Rodríguez, JC.; González-Rojo, JF.; Gómez-Escribano, AP.; Vázquez-Manrique, RP.; Sánchez Salmerón, AJ. (2022). Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Scientific Reports. 12(1):1-11. https://doi.org/10.1038/s41598-022-05823-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-05823-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35110654 es_ES
dc.identifier.pmcid PMC8810772 es_ES
dc.relation.pasarela S\458816 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974). es_ES
dc.description.references Keith, S. A., Amrit, F. R. G., Ratnappan, R. & Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476–486. https://doi.org/10.1016/j.ymeth.2014.04.003 (2014). es_ES
dc.description.references Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015). es_ES
dc.description.references Jushaj, A. et al. Optimized criteria for locomotion-based healthspan evaluation in C. elegans using the WorMotel system. PLoS ONE 15, e0229583 (2020). es_ES
dc.description.references Rollins, J. A., Howard, A. C., Dobbins, S. K., Washburn, E. H. & Rogers, A. N. Assessing health span in Caenorhabditis elegans: Lessons from short-lived mutants. J. Gerontol. Ser. A 72, 473–480. https://doi.org/10.1093/gerona/glw248 (2017). es_ES
dc.description.references Buckingham, S. D. & Sattelle, D. B. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 10, 84. https://doi.org/10.1186/1471-2202-10-84 (2009). es_ES
dc.description.references Gómez-Escribano, A. P. et al. Synergistic activation of ampk prevents from polyglutamine-induced toxicity in Caenorhabditis elegans. Pharmacol. Res. 161, 105105. https://doi.org/10.1016/j.phrs.2020.105105 (2020). es_ES
dc.description.references Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS ONE 7, e33483. https://doi.org/10.1371/journal.pone.0033483 (2012). es_ES
dc.description.references Puckering, T. et al. Automated Wormscan. F1000Research 6, 192. https://doi.org/10.12688/f1000research.10767.2 (2017). es_ES
dc.description.references Stroustrup, N. et al. The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665–70. https://doi.org/10.1038/nmeth.2475 (2013). es_ES
dc.description.references Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592. https://doi.org/10.1038/nmeth.1625 (2011). es_ES
dc.description.references Pitt, J. N. et al. WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 41, 961–973. https://doi.org/10.1007/s11357-019-00124-9 (2019). es_ES
dc.description.references Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 6, e26652. https://doi.org/10.7554/eLife.26652 (2017). es_ES
dc.description.references Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. Mech. Ageing Dev. 126, 139–145. https://doi.org/10.1016/j.mad.2004.09.010 (2005). es_ES
dc.description.references Le, K. N. et al. An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun. Biol. 3, 297. https://doi.org/10.1038/s42003-020-1013-2 (2020). es_ES
dc.description.references Hsu, A. L., Feng, Z., Hsieh, M. Y. & Xu, X. Z. S. Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiol. Aging 30, 1498–1503. https://doi.org/10.1016/j.neurobiolaging.2007.12.007 (2009). es_ES
dc.description.references Chung, K. et al. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip 11, 3689–3697. https://doi.org/10.1039/c1lc20400a (2011). es_ES
dc.description.references Gupta, B. P. & Rezai, P. Microfluidic approaches for manipulating, imaging, and screening C. elegans. Micromachines 7, 123 (2016). es_ES
dc.description.references Lange, D., Storment, C. W., Conley, C. A. & Kovacs, G. T. A. A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space. Sens. Actuators B Chem. 107, 904–914. https://doi.org/10.1016/j.snb.2004.12.039 (2005). es_ES
dc.description.references Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M. F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. 104, 13891–13895. https://doi.org/10.1073/pnas.0706513104 (2007). es_ES
dc.description.references Lockery, S. R. et al. Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143. https://doi.org/10.1152/jn.91327.2007 (2008). es_ES
dc.description.references Park, S. et al. Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3, 1–5. https://doi.org/10.1371/journal.pone.0002550 (2008). es_ES
dc.description.references Rahman, M. et al. NemaLife: A structured microfluidic culture device optimized for aging studies in crawling C. elegans. BioRxiv.https://doi.org/10.1101/675827 (2019). es_ES
dc.description.references Rahman, M. et al. NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci. Rep. 10, 16190. https://doi.org/10.1038/s41598-020-73002-6 (2020). es_ES
dc.description.references Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard Petri plates. PLoS ONE 14, e0215548 (2019). es_ES
dc.description.references Gómez-Escribano, A. P. et al. Multiple hormonal signalling pathways function cell-nonautonomously to control protein homeostasis in Caenorhabditis elegans. BioRxiv. https://doi.org/10.1101/551580 (2019). es_ES
dc.description.references Frøkjær-Jensen, C. Transposon-Assisted Genetic Engineering with Mos1-Mediated Single-Copy Insertion (MosSCI) BT–C. elegans: Methods and Applications 49–58 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-2842-2_5. es_ES
dc.description.references Chen, B., Liu, Q., Ge, Q., Xie, J. & Wang, Z.-W. UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr. Biol. 17, 1334–1339. https://doi.org/10.1016/j.cub.2007.06.060 (2007). es_ES
dc.description.references Puchalt, J. C. et al. Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Sci. Rep. 10, 8729. https://doi.org/10.1038/s41598-020-65619-4 (2020). es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
upv.costeAPC 1790 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem