Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
Keith, S. A., Amrit, F. R. G., Ratnappan, R. & Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476–486. https://doi.org/10.1016/j.ymeth.2014.04.003 (2014).
Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015).
[+]
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
Keith, S. A., Amrit, F. R. G., Ratnappan, R. & Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476–486. https://doi.org/10.1016/j.ymeth.2014.04.003 (2014).
Tissenbaum, H. A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59, 59–63. https://doi.org/10.1080/07924259.2014.940470 (2015).
Jushaj, A. et al. Optimized criteria for locomotion-based healthspan evaluation in C. elegans using the WorMotel system. PLoS ONE 15, e0229583 (2020).
Rollins, J. A., Howard, A. C., Dobbins, S. K., Washburn, E. H. & Rogers, A. N. Assessing health span in Caenorhabditis elegans: Lessons from short-lived mutants. J. Gerontol. Ser. A 72, 473–480. https://doi.org/10.1093/gerona/glw248 (2017).
Buckingham, S. D. & Sattelle, D. B. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 10, 84. https://doi.org/10.1186/1471-2202-10-84 (2009).
Gómez-Escribano, A. P. et al. Synergistic activation of ampk prevents from polyglutamine-induced toxicity in Caenorhabditis elegans. Pharmacol. Res. 161, 105105. https://doi.org/10.1016/j.phrs.2020.105105 (2020).
Mathew, M. D., Mathew, N. D. & Ebert, P. R. WormScan: A technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS ONE 7, e33483. https://doi.org/10.1371/journal.pone.0033483 (2012).
Puckering, T. et al. Automated Wormscan. F1000Research 6, 192. https://doi.org/10.12688/f1000research.10767.2 (2017).
Stroustrup, N. et al. The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665–70. https://doi.org/10.1038/nmeth.2475 (2013).
Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592. https://doi.org/10.1038/nmeth.1625 (2011).
Pitt, J. N. et al. WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience 41, 961–973. https://doi.org/10.1007/s11357-019-00124-9 (2019).
Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 6, e26652. https://doi.org/10.7554/eLife.26652 (2017).
Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. Mech. Ageing Dev. 126, 139–145. https://doi.org/10.1016/j.mad.2004.09.010 (2005).
Le, K. N. et al. An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun. Biol. 3, 297. https://doi.org/10.1038/s42003-020-1013-2 (2020).
Hsu, A. L., Feng, Z., Hsieh, M. Y. & Xu, X. Z. S. Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiol. Aging 30, 1498–1503. https://doi.org/10.1016/j.neurobiolaging.2007.12.007 (2009).
Chung, K. et al. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip 11, 3689–3697. https://doi.org/10.1039/c1lc20400a (2011).
Gupta, B. P. & Rezai, P. Microfluidic approaches for manipulating, imaging, and screening C. elegans. Micromachines 7, 123 (2016).
Lange, D., Storment, C. W., Conley, C. A. & Kovacs, G. T. A. A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space. Sens. Actuators B Chem. 107, 904–914. https://doi.org/10.1016/j.snb.2004.12.039 (2005).
Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M. F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. 104, 13891–13895. https://doi.org/10.1073/pnas.0706513104 (2007).
Lockery, S. R. et al. Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143. https://doi.org/10.1152/jn.91327.2007 (2008).
Park, S. et al. Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3, 1–5. https://doi.org/10.1371/journal.pone.0002550 (2008).
Rahman, M. et al. NemaLife: A structured microfluidic culture device optimized for aging studies in crawling C. elegans. BioRxiv.https://doi.org/10.1101/675827 (2019).
Rahman, M. et al. NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci. Rep. 10, 16190. https://doi.org/10.1038/s41598-020-73002-6 (2020).
Puchalt, J. C., Sánchez-Salmerón, A.-J., Martorell Guerola, P. & Genovés Martínez, S. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard Petri plates. PLoS ONE 14, e0215548 (2019).
Gómez-Escribano, A. P. et al. Multiple hormonal signalling pathways function cell-nonautonomously to control protein homeostasis in Caenorhabditis elegans. BioRxiv. https://doi.org/10.1101/551580 (2019).
Frøkjær-Jensen, C. Transposon-Assisted Genetic Engineering with Mos1-Mediated Single-Copy Insertion (MosSCI) BT–C. elegans: Methods and Applications 49–58 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-2842-2_5.
Chen, B., Liu, Q., Ge, Q., Xie, J. & Wang, Z.-W. UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr. Biol. 17, 1334–1339. https://doi.org/10.1016/j.cub.2007.06.060 (2007).
Puchalt, J. C. et al. Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter. Sci. Rep. 10, 8729. https://doi.org/10.1038/s41598-020-65619-4 (2020).
[-]