Mostrar el registro sencillo del ítem
dc.contributor.author | Zarco, Ana María | es_ES |
dc.contributor.author | Pascual-Fuentes, Fernando | es_ES |
dc.date.accessioned | 2023-10-31T13:56:45Z | |
dc.date.available | 2023-10-31T13:56:45Z | |
dc.date.issued | 2023-07-28 | |
dc.identifier.uri | http://hdl.handle.net/10251/199054 | |
dc.description.abstract | [EN] This work, structured in two main parts, is devoted to the parabola topic. In the first, the elements of a parabola are reviewed by linking the definition of intersection of a plane and a cone with a locus of the plane. The necessary transformations for the calculation of the elements as a curve in space are pointed out as well as historical notes and properties of light are included. In the second part, the applications in teaching at a high school level or university courses are explained. A project based on the reflection of light is proposed that seeks to connect various subjects in line with the new educational paradigm of development of key competencies, joining different fields of knowledge. For university courses, applications of linear algebra are obtained in the establishment of relationships between analytical geometry in the rotation and translation of planes, and the dihedral system that is taught in technical drawing subjects. As a conclusion, it is obtained that the teaching of the parabola from different approaches allows a complete learning of diverse fields of knowledge, even of different topics of mathematics, an essential factor in the development of thought at any educational level. | es_ES |
dc.description.abstract | [ES] Este trabajo, estructurado en dos partes principales, está dedicado al tópico de la parábola. Primeramente, se revisan los elementos de una parábola relacionando la definición de intersección de un plano y un cono con un lugar geométrico del plano. Se señalan las transformaciones necesarias para el cálculo de los elementos como curva en el espacio, se incluyen reseñas históricas y propiedades de la luz. En la segunda parte se explican las aplicaciones en la docencia a nivel bachillerato o cursos universitarios. Se propone un proyecto basado en la reflexión de la luz que busca conectar diversas materias en consonancia con el nuevo paradigma educativo de desarrollo de competencias clave, uniendo diferentes campos del conocimiento. Para los cursos universitarios se obtienen aplicaciones del álgebra lineal en el establecimiento de relaciones entre la geometría analítica en la rotación y traslación de planos, y el sistema diedro que se enseña en las asignaturas de dibujo técnico. Como conclusión se obtiene que la ensñanza de la parábola desde diferentes enfoques permite un aprendizaje completo de diversos campos del conocimiento, incluso de diferentes temas de las matemáticas, factor fundamental en el desarrollo del pensamiento en cualquier nivel educativo. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Modelling in Science Education and Learning | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Conic | es_ES |
dc.subject | Reflection of light | es_ES |
dc.subject | Project-based learning | es_ES |
dc.subject | Parabola | es_ES |
dc.subject | Locus | es_ES |
dc.subject | Cónica | es_ES |
dc.subject | Reflexión de la luz | es_ES |
dc.subject | Aprendizaje basado en proyectos | es_ES |
dc.subject | Parábola | es_ES |
dc.subject | Lugar geométrico | es_ES |
dc.title | Elements of the parabola in the three-dimensional space and applications in teaching through a project based on reflection of light | es_ES |
dc.title.alternative | Elementos de la parábola en el espacio tridimensional y aplicaciones en la enseñanza a través de un proyecto sobre la reflexión de la luz | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/msel.2023.19283 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Zarco, AM.; Pascual-Fuentes, F. (2023). Elements of the parabola in the three-dimensional space and applications in teaching through a project based on reflection of light. Modelling in Science Education and Learning. 16(2):51-69. https://doi.org/10.4995/msel.2023.19283 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2023.19283 | es_ES |
dc.description.upvformatpinicio | 51 | es_ES |
dc.description.upvformatpfin | 69 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1988-3145 | |
dc.relation.pasarela | OJS\19283 | es_ES |
dc.description.references | Alonso, M., & Finn, E. J. (1967). Fundamental university physics, volume ii, fields and waves. Addison-Wesley Publishing Company. | es_ES |
dc.description.references | Anzola, A., Caruncho, J., & Pérez-Canales, G. (1982). Geometr'ıa proyectiva. cónicas. cuádricas. tomo 7. Editorial autores. | es_ES |
dc.description.references | Boyer, C. B. (1987). Historia de la matemática. Alianza. | es_ES |
dc.description.references | Burgos, J. (2006). Álgebra lineal y geometría cartesiana. tercera edición. MC Graw Hill. | es_ES |
dc.description.references | Cevíkalp, H., Címen, E., & Ozturk, G. (2021). The nearest polyhedral convex conic regions for high-dimensional classification. Turkish Journal of Electrical Engineering and Computer Sciences, 2(28). https://doi.org/10.3906/elk-2005-142 | es_ES |
dc.description.references | Consejo, U. (2018). Recomendación del parlamento europeo y el consejo, de 22 de mayo de 2018, sobre las competencias clave para el aprendizaje permanente,C189-1. Diario Oficial de la Unión Europea. Retrieved from https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=OJ:C:2018:189:FULL | es_ES |
dc.description.references | Florio, E. (2022). The parabola: Section of a cone or locus of points of a plane's tips for teaching of geometry from some writings by Mydorge and Wallis. Mathematics, 10(974). https://doi.org/10.3390/math10060974 | es_ES |
dc.description.references | Shonoda, E. N. (2018). Classification of conics and cassini curves in minkowski space-time plane. Journal of the Egyptian Mathematical Society, 24(2), 270-278. https://doi.org/10.1016/j.joems.2015.07.002 | es_ES |
dc.description.references | Stewartz, I. (1989). Galois theory (Second ed.). United States of America: Chapman and Hall/CRC. https://doi.org/10.1007/978-94-009-0839-0 | es_ES |
dc.description.references | Stewartz, I. (2018). Mentes maravillosas. los matemáticos que cambiaron el mundo. Barcelona: Crítica. | es_ES |
dc.description.references | Teófilo de Sousa, R., & Vieira Alves, F. R. (2022). Didactic engineering and learning objects: A proposal for teaching parabolas in analytical geometry. Indonesian Journal of science and mathematics education, 1(5). https://doi.org/10.24042/ijsme.v5i1.11108 | es_ES |
dc.description.references | Teófilo de Sousa, R. Vieira Alves, F. R., & Araújo Souza, M. J. (2022). Visualización y estudio sistemático de la parábola con el aporte del software geogebra. Epsilon-Revista de Educación, 112, 45-53. Retrieved from https://thales.cica.es/epsilon/?q=node/4974 | es_ES |
dc.description.references | Villasante, C. (2010). Energías renovables. Tekniker. Universidad del País Vasco, 1-15. Retrieved from http://www.sc.ehu.es/sbweb/energias-renovables/temas/termoelectrica /revision/revision.html | es_ES |