- -

Genome wide association study of growth and feed efficiency traits in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genome wide association study of growth and feed efficiency traits in rabbits

Mostrar el registro completo del ítem

Garreau, H.; Labrune, Y.; Chapuis, H.; Ruesche, J.; Riquet, J.; Demars, J.; Benitez, F.... (2023). Genome wide association study of growth and feed efficiency traits in rabbits. World Rabbit Science. 31(3):163-169. https://doi.org/10.4995/wrs.2023.18215

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199168

Ficheros en el ítem

Metadatos del ítem

Título: Genome wide association study of growth and feed efficiency traits in rabbits
Autor: Garreau, Hervé Labrune, Yann Chapuis, Hervé Ruesche, Julien Riquet, Juliette Demars, Julie Benitez, Florence Richard, François Drouilhet, Laurence Zemb, Olivier Gilbert, Hélène
Fecha difusión:
Resumen:
[EN] Feed efficiency is a major production trait in animal genetic breeding schemes. To further investigate the genetic control of feed efficiency in rabbits, we performed a genome-wide association study (GWAS) for growth ...[+]
Palabras clave: Feed efficiency , SNP , GWAS , Genetics , Candidate genes , Rabbits
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2023.18215
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/wrs.2023.18215
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/633531
Agradecimientos:
This study is part of the Feed-a-Gene Project, funded from the European Union’s H2020 Programme under grant agreement nº 633 531.
Tipo: Artículo

References

Aggrey S.E., Lee J., Karnuah A.B., Rekaya R. 2014. Transcriptomic analysis of genes in the nitrogen recycling pathway of meattype chickens divergently selected for feed efficiency. Anim. Genet., 45: 215-222. https://doi.org/10.1111/age.12098

Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Barrio A.M., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345: 1074-1079. https://doi.org/10.1126/science.1253714

Delpuech E., Aliakbari A., Labrune Y., Fève K., Billon Y., Gilbert H., Riquet J. 2021. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Genet. Sel. Evol., 53: 49. https://doi.org/10.1186/s12711-021-00642-1 [+]
Aggrey S.E., Lee J., Karnuah A.B., Rekaya R. 2014. Transcriptomic analysis of genes in the nitrogen recycling pathway of meattype chickens divergently selected for feed efficiency. Anim. Genet., 45: 215-222. https://doi.org/10.1111/age.12098

Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Barrio A.M., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345: 1074-1079. https://doi.org/10.1126/science.1253714

Delpuech E., Aliakbari A., Labrune Y., Fève K., Billon Y., Gilbert H., Riquet J. 2021. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Genet. Sel. Evol., 53: 49. https://doi.org/10.1186/s12711-021-00642-1

Ding R., Yang M., Wang X., Quan J., Zhuang Z., Zhou S., Li S., Xu Z., Zheng E., Cai G., Liu D., Huang W., Yang J., Wu Z. 2018. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front. Genet., 9: 220. https://doi.org/10.3389/fgene.2018.00220

Drouilhet L., Gilbert H., Balmisse E., Ruesche J., Tircazes A., Larzul C., Garreau H. 2013. Genetic parameters for two selection criteria for feed efficiency in rabbits. J. Anim. Sci., 91: 3128. https://doi.org/10.2527/jas.2012-6176

Drouilhet L., Achard C.S, Zemb O., Molette C., Gidenne T., Larzul C., Ruesche J., Tircazes A., Segura M., Theau-Clément M., Joly T., Balmisse E., Garreau H., Gilbert H. 2015. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics. J. Anim. Sci., 94: 38-48. https://doi.org/10.2527/jas.2015-9402

El-Sabrout, K., Aggag, S. 2018. Association of Melanocortin (MC4R) and Myostatin (MSTN) genes with carcass quality in rabbit. Meat Sci., 137: 67-70. https://doi.org/10.1016/j.meatsci.2017.11.008

Gao X., Starmer J., Martin E.R. 2008. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol., 32: 361-369. https://doi.org/10.1002/gepi.20310

Gao X., Becker L.C., Becker D.M., Starmer J.D., Province M.A. 2010. Avoiding the high bonferroni penalty in genomewide association studies. Genet. Epidemiol., 34: 100-105. https://doi.org/10.1002/gepi.20430

Garreau, H., Ruesche, J., Gilbert, H., Balmisse, E., Benitez, F., Richard, F., David, I., Drouilhet, L., Zemb, O. 2019. Estimating direct genetic and maternal effects affecting rabbit growth and feed efficiency with a factorial design. J. Anim. Breed. Genet., 136: 168-173. https://doi.org/10.1111/jbg.12380

Gidenne T., Garreau H., Drouilhet L., Aubert C., Maertens L. 2017a. Improving feed efficiency in rabbit production, a review on nutritional, technico-economical, genetic and environmental aspects. Anim. Feed Sci. Technol., 225: 109-122. https://doi.org/10.1016/j.anifeedsci.2017.01.016

Gidenne T., Lamothe L., Bannelier C., Molette C., Gilbert H., Chemit M.L., Segura M., Benitez F., Richard F., Garreau H., Drouilhet L. 2017b. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: III. Digestion and excretion of nitrogen and minerals. J. Anim. Sci., 95: 1301-1312. https://doi.org/10.2527/jas.2016.1192

Helal M.M. 2019. Association between growth hormone receptor gene polymorphism and body weight in growing rabbits. Adv. Anim. Vet. Sci., 7: 994-998. https://doi.org/10.17582/journal.aavs/2019/7.11.994.998

Helal M., Hany N., Maged M., Abdelaziz M., Osama N., Younan Y. W., Ismail Y., Abdelrahman R., Ragab M. 2021. Candidate genes for marker-assisted selection for growth, carcass and meat quality traits in rabbits. Anim. Biotechnol., 33: 1691-1710. https://doi.org/10.1080/10495398.2021.1908315

Larzul C., De Rochambeau H. 2005. Selection for residual feed consumption in the rabbit. Livest. Prod. Sci., 95: 67-72. https://doi.org/10.1016/j.livprodsci.2004.12.007

Liao Y., Wang Z., Glória L.S., Zhang K., Zhang C., Yang R., Luo X., Jia X., Lai S.J., Chen, S.Y. 2021. Genome-Wide Association Studies for Growth Curves in Meat Rabbits Through the Single-Step Nonlinear Mixed Model. Frontiers in Genetics, 12, 750939. https://doi.org/10.3389/fgene.2021.750939

Masuda Y., Legarra A., Aguilar I., Misztal I. 2019. Efficient quality control methods for genomic and pedigree data used in routine genomic evaluation. J. Anim. Sci. 97: 50-51. https://doi.org/10.1093/jas/skz258.101

Mavrides C., Christen P. 1978. Mitochondrial and cytosolic aspartate aminotransferase from chicken: activity towards amino acids. Biochem. Biophys. Res. Comm., 85: 769-773. https://doi.org/10.1016/0006-291X(78)91227-5

Misztal, I., Legarra, A., Aguilar, I. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree and genomic information. J. Dairy Sci., 92: 4648-4655. https://doi.org/10.3168/jds.2009-2064

Misztal, I., S. Tsuruta, D.A.L. Lourenco, I. Aguilar, A. Legarra, and Z. Vitezica. 2014. Manual for BLUPF90 family of programs. http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf. Accessed August 2022.

Mukiibi R., Vinsky M., Keogh K. A., Fitzsimmons C., Stothard P., Waters S. M., Li C. 2018. Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more feed efficient beef cattle. Sci. Rep. 8: 7303. https://doi.org/10.1038/s41598-018-25605-3

Onteru S.K., Gorbach D.M., Young J.M., Garrick D.J., Dekkers J.C.M., Rothschild M.F. 2013. Whole genome association studies of residual feed intake and related traits in the pig. PLoS One. 8: e61756. https://doi.org/10.1371/journal.pone.0061756

Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits estimated by using a control cryopreserved population. World Rabbit Sci., 11, 53-62. https://doi.org/10.4995/wrs.2003.497

Piles M., Gomez, E.A., Rafel, O., Ramon, J., Blasco, A. 2004. Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits. J. Anim. Sci., 82, 654-660. https://doi.org/10.2527/2004.823654x

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet., 81: 559-575. https://doi.org/10.1086/519795

Sánchez J.P., Legarra A., Velasco-Galilea M., Piles M., Sánchez A., Rafel O., González-Rodríguez O., Ballester M. 2020. Genomewide association study for feed efficiency in collective cageraised rabbits under full and restricted feeding. Anim. Genet., 51: 799-810. https://doi.org/10.1111/age.12988

Sosa-Madrid B.S., Santacreu M.A., Blasco A., Fontanesi L., Pena R.N., Ibanez-Escriche N. 2020. A genome-wide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. J. Anim. Breed Genet., 137: 123-138. https://doi.org/10.1111/jbg.12451

Sternstein I., Reissmann M., D., Dorota M., Bieniek J., Brockmann G. A. 2015. “A comprehensive linkage map and QTL map for carcass traits in a cross between Giant Grey and New Zealand White rabbits.” BMC Genetics, 16: 16. https://doi.org/10.1186/s12863-015-0168-1

VanRaden P.M. 2008. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci., 91: 4414-4423. https://doi.org/10.3168/jds.2007-0980

Yang L. Q., Zhang K., Wu Q.Y., Li J., Lai S.J., Song T.Z., Zhang M. 2019. Identification of two novel single nucleotide polymorphism sites in the Myostatin (MSTN) gene and their association with carcass traits in meat-type rabbits (Oryctolagus cuniculus). World Rabbit Sci., 27: 249-256. https://doi.org/10.4995/wrs.2019.10610

Yang X., Deng F., Wu Z., Chen S.Y., Shi Y., Jia X., Lai S.J. 2020. A genome-wide association study identifying genetic variants associated with growth, carcass and meat quality traits in rabbits. Animals, 10: 1068. https://doi.org/10.3390/ani10061068

Zhang G.W., Gao L., Chen S.Y., Zhao X.B., Tian Y.F., Wang X., Deng X.S., Lai S.J. 2013. Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene, 527: 553-557. https://doi.org/10.1016/j.gene.2013.06.024

Zhou X., Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet., 44: 821-824. https://doi.org/10.1038/ng.2310

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem