Aggrey S.E., Lee J., Karnuah A.B., Rekaya R. 2014. Transcriptomic analysis of genes in the nitrogen recycling pathway of meattype chickens divergently selected for feed efficiency. Anim. Genet., 45: 215-222. https://doi.org/10.1111/age.12098
Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Barrio A.M., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345: 1074-1079. https://doi.org/10.1126/science.1253714
Delpuech E., Aliakbari A., Labrune Y., Fève K., Billon Y., Gilbert H., Riquet J. 2021. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Genet. Sel. Evol., 53: 49. https://doi.org/10.1186/s12711-021-00642-1
[+]
Aggrey S.E., Lee J., Karnuah A.B., Rekaya R. 2014. Transcriptomic analysis of genes in the nitrogen recycling pathway of meattype chickens divergently selected for feed efficiency. Anim. Genet., 45: 215-222. https://doi.org/10.1111/age.12098
Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Barrio A.M., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345: 1074-1079. https://doi.org/10.1126/science.1253714
Delpuech E., Aliakbari A., Labrune Y., Fève K., Billon Y., Gilbert H., Riquet J. 2021. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Genet. Sel. Evol., 53: 49. https://doi.org/10.1186/s12711-021-00642-1
Ding R., Yang M., Wang X., Quan J., Zhuang Z., Zhou S., Li S., Xu Z., Zheng E., Cai G., Liu D., Huang W., Yang J., Wu Z. 2018. Genetic architecture of feeding behavior and feed efficiency in a Duroc pig population. Front. Genet., 9: 220. https://doi.org/10.3389/fgene.2018.00220
Drouilhet L., Gilbert H., Balmisse E., Ruesche J., Tircazes A., Larzul C., Garreau H. 2013. Genetic parameters for two selection criteria for feed efficiency in rabbits. J. Anim. Sci., 91: 3128. https://doi.org/10.2527/jas.2012-6176
Drouilhet L., Achard C.S, Zemb O., Molette C., Gidenne T., Larzul C., Ruesche J., Tircazes A., Segura M., Theau-Clément M., Joly T., Balmisse E., Garreau H., Gilbert H. 2015. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics. J. Anim. Sci., 94: 38-48. https://doi.org/10.2527/jas.2015-9402
El-Sabrout, K., Aggag, S. 2018. Association of Melanocortin (MC4R) and Myostatin (MSTN) genes with carcass quality in rabbit. Meat Sci., 137: 67-70. https://doi.org/10.1016/j.meatsci.2017.11.008
Gao X., Starmer J., Martin E.R. 2008. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol., 32: 361-369. https://doi.org/10.1002/gepi.20310
Gao X., Becker L.C., Becker D.M., Starmer J.D., Province M.A. 2010. Avoiding the high bonferroni penalty in genomewide association studies. Genet. Epidemiol., 34: 100-105. https://doi.org/10.1002/gepi.20430
Garreau, H., Ruesche, J., Gilbert, H., Balmisse, E., Benitez, F., Richard, F., David, I., Drouilhet, L., Zemb, O. 2019. Estimating direct genetic and maternal effects affecting rabbit growth and feed efficiency with a factorial design. J. Anim. Breed. Genet., 136: 168-173. https://doi.org/10.1111/jbg.12380
Gidenne T., Garreau H., Drouilhet L., Aubert C., Maertens L. 2017a. Improving feed efficiency in rabbit production, a review on nutritional, technico-economical, genetic and environmental aspects. Anim. Feed Sci. Technol., 225: 109-122. https://doi.org/10.1016/j.anifeedsci.2017.01.016
Gidenne T., Lamothe L., Bannelier C., Molette C., Gilbert H., Chemit M.L., Segura M., Benitez F., Richard F., Garreau H., Drouilhet L. 2017b. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: III. Digestion and excretion of nitrogen and minerals. J. Anim. Sci., 95: 1301-1312. https://doi.org/10.2527/jas.2016.1192
Helal M.M. 2019. Association between growth hormone receptor gene polymorphism and body weight in growing rabbits. Adv. Anim. Vet. Sci., 7: 994-998. https://doi.org/10.17582/journal.aavs/2019/7.11.994.998
Helal M., Hany N., Maged M., Abdelaziz M., Osama N., Younan Y. W., Ismail Y., Abdelrahman R., Ragab M. 2021. Candidate genes for marker-assisted selection for growth, carcass and meat quality traits in rabbits. Anim. Biotechnol., 33: 1691-1710. https://doi.org/10.1080/10495398.2021.1908315
Larzul C., De Rochambeau H. 2005. Selection for residual feed consumption in the rabbit. Livest. Prod. Sci., 95: 67-72. https://doi.org/10.1016/j.livprodsci.2004.12.007
Liao Y., Wang Z., Glória L.S., Zhang K., Zhang C., Yang R., Luo X., Jia X., Lai S.J., Chen, S.Y. 2021. Genome-Wide Association Studies for Growth Curves in Meat Rabbits Through the Single-Step Nonlinear Mixed Model. Frontiers in Genetics, 12, 750939. https://doi.org/10.3389/fgene.2021.750939
Masuda Y., Legarra A., Aguilar I., Misztal I. 2019. Efficient quality control methods for genomic and pedigree data used in routine genomic evaluation. J. Anim. Sci. 97: 50-51. https://doi.org/10.1093/jas/skz258.101
Mavrides C., Christen P. 1978. Mitochondrial and cytosolic aspartate aminotransferase from chicken: activity towards amino acids. Biochem. Biophys. Res. Comm., 85: 769-773. https://doi.org/10.1016/0006-291X(78)91227-5
Misztal, I., Legarra, A., Aguilar, I. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree and genomic information. J. Dairy Sci., 92: 4648-4655. https://doi.org/10.3168/jds.2009-2064
Misztal, I., S. Tsuruta, D.A.L. Lourenco, I. Aguilar, A. Legarra, and Z. Vitezica. 2014. Manual for BLUPF90 family of programs. http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf. Accessed August 2022.
Mukiibi R., Vinsky M., Keogh K. A., Fitzsimmons C., Stothard P., Waters S. M., Li C. 2018. Transcriptome analyses reveal reduced hepatic lipid synthesis and accumulation in more feed efficient beef cattle. Sci. Rep. 8: 7303. https://doi.org/10.1038/s41598-018-25605-3
Onteru S.K., Gorbach D.M., Young J.M., Garrick D.J., Dekkers J.C.M., Rothschild M.F. 2013. Whole genome association studies of residual feed intake and related traits in the pig. PLoS One. 8: e61756. https://doi.org/10.1371/journal.pone.0061756
Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits estimated by using a control cryopreserved population. World Rabbit Sci., 11, 53-62. https://doi.org/10.4995/wrs.2003.497
Piles M., Gomez, E.A., Rafel, O., Ramon, J., Blasco, A. 2004. Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits. J. Anim. Sci., 82, 654-660. https://doi.org/10.2527/2004.823654x
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet., 81: 559-575. https://doi.org/10.1086/519795
Sánchez J.P., Legarra A., Velasco-Galilea M., Piles M., Sánchez A., Rafel O., González-Rodríguez O., Ballester M. 2020. Genomewide association study for feed efficiency in collective cageraised rabbits under full and restricted feeding. Anim. Genet., 51: 799-810. https://doi.org/10.1111/age.12988
Sosa-Madrid B.S., Santacreu M.A., Blasco A., Fontanesi L., Pena R.N., Ibanez-Escriche N. 2020. A genome-wide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. J. Anim. Breed Genet., 137: 123-138. https://doi.org/10.1111/jbg.12451
Sternstein I., Reissmann M., D., Dorota M., Bieniek J., Brockmann G. A. 2015. “A comprehensive linkage map and QTL map for carcass traits in a cross between Giant Grey and New Zealand White rabbits.” BMC Genetics, 16: 16. https://doi.org/10.1186/s12863-015-0168-1
VanRaden P.M. 2008. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci., 91: 4414-4423. https://doi.org/10.3168/jds.2007-0980
Yang L. Q., Zhang K., Wu Q.Y., Li J., Lai S.J., Song T.Z., Zhang M. 2019. Identification of two novel single nucleotide polymorphism sites in the Myostatin (MSTN) gene and their association with carcass traits in meat-type rabbits (Oryctolagus cuniculus). World Rabbit Sci., 27: 249-256. https://doi.org/10.4995/wrs.2019.10610
Yang X., Deng F., Wu Z., Chen S.Y., Shi Y., Jia X., Lai S.J. 2020. A genome-wide association study identifying genetic variants associated with growth, carcass and meat quality traits in rabbits. Animals, 10: 1068. https://doi.org/10.3390/ani10061068
Zhang G.W., Gao L., Chen S.Y., Zhao X.B., Tian Y.F., Wang X., Deng X.S., Lai S.J. 2013. Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene, 527: 553-557. https://doi.org/10.1016/j.gene.2013.06.024
Zhou X., Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet., 44: 821-824. https://doi.org/10.1038/ng.2310
[-]