Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT Signals Are Required for the Initiation of Hair Follicle Development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
Cai C., Zhao G., Tian L., Liu L., Yan K., Ma Y., Ji Z., Li X., Han K., Gao J., Qiu X., Fan Q., Yang T., Ma B. 2012. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol. Rep., 28: 1764-1770. https://doi.org/10.3892/or.2012.1995
Chanda S., Robinette C.L., Couse J.F. 2000. 17betaestradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-alpha pathway. Am. J. Physiol.Endocrinol. Met., 278: E202-E210. https://doi.org/10.1152/ajpendo.2000.278.2.E202
[+]
Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT Signals Are Required for the Initiation of Hair Follicle Development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
Cai C., Zhao G., Tian L., Liu L., Yan K., Ma Y., Ji Z., Li X., Han K., Gao J., Qiu X., Fan Q., Yang T., Ma B. 2012. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol. Rep., 28: 1764-1770. https://doi.org/10.3892/or.2012.1995
Chanda S., Robinette C.L., Couse J.F. 2000. 17betaestradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-alpha pathway. Am. J. Physiol.Endocrinol. Met., 278: E202-E210. https://doi.org/10.1152/ajpendo.2000.278.2.E202
Cong F., Schweizer L., Chamorro M., Varmus H. 2003. Requirement for a Nuclear Function of β-Catenin in Wnt Signaling. Mol. Cel. Biol., 23: 8462-8470. https://doi.org/10.1128/MCB.23.23.8462-8470.2003
Davies M.N., Gloriam D.E., Secker A., Freitas A.A., Timmis J., Flower D.R. 2011. Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level. Curr. Topi. Med. Chem., 11: 1994-2009. https://doi.org/10.2174/156802611796391221
Guo Y., Xie J., Rubin E., Tang Y.X., Lin F., Zi X., Bang H.H. 2008. Frzb, a Secreted Wnt Antagonist, Decreases Growth and Invasiveness of Fibrosarcoma Cells Associated with Inhibition of Met Signaling. Cancer Res., 68: 3350-3360. https://doi.org/10.1158/0008-5472.CAN-07-3220
Hardy R., Juarez M., Naylor A., Tu J., Rabbitt E.H., Filer A., Stewart P.M., Buckley C.D., Raza K., Cooper M.S. 2012. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis. Arthritis Res. Ther., 14: R226. https://doi.org/10.1186/ar4065
Hoang B., Moos M., Vukicevic S., Luyten F.P. 1996. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem., 271: 26131-26137.
Kim B.K., Yoon S.K. 2014. Expression of Sfrp2 Is Increased in Catagen of Hair Follicles and Inhibits Keratinocyte Proliferation, Ann Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79
Krause K., Foitzik K. 2006. Biology of the Hair Follicle: The Basics. In: Seminars in cutaneous medicine and surgery. Philadelphia, PA: WB Saunders Co., vol. 25, no. 1, pp. 2-10. https://doi.org/10.1016/j.sder.2006.01.002
Kwack M.H., Kim M.K., Kim J.C., Sung Y.K. 2012. Dickkopf 1 Promotes Regression of Hair Follicles. J. Invest. Dermatol. 132: 1554-1560. https://doi.org/10.1038/jid.2012.24
Lazareno S. 1994. GraphPad Prism (version 1.02). Trends Pharmacol. Sci., 15: 353-354. https://doi.org/10.1016/0165-6147(94)90038-8
Leyns L., Bouwmeester T., Kim S.H., Piccolo S., de Robertis E. 1997. Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer. Cell, 88: 747-756. https://doi.org/10.1016/S0092-8674(00)81921-2
Livak K.J., Schmittgen T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25: 402-408. https://doi.org/10.1006/meth.2001.1262
MacPhail S., Thomas T., Wilkinson R., Davison J.M., Dunlop W. 1989. Decreased plasma osmolality in human pregnancy is secondary to a reduction in intracellular osmoles. Clinical Sci., 77: 29P-30P. https://doi.org/10.1042/cs077029Pc
Maier H., Meixner M., Hartmann D., Sandhoff R., Wang-Eckhardt L., Zoller I., Gieselmann V., Eckhardt M.J. 2011. Normal Fur Development and Sebum Production Depends on Fatty Acid 2-Hydroxylase Expression in Sebaceous Glands. J. Biol. Chem., 286: 25922-25934. https://doi.org/10.1074/jbc.M111.231977
O'Shaughnessy R.F., Christiano A.M., Jahoda C.A.B. 2004. The role of BMP signalling in the control of ID3 expression in the hair follicle. Exp. Dermatol., 13: 621-629. https://doi.org/10.1111/j.0906-6705.2004.00206.x
Payne D.M., Rossomando A.J., Martino P., Erickson A.K., Sturgill T.W. 1991. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). The EMBO journal. 10: 885-892. https://doi.org/10.1002/j.1460-2075.1991.tb08021.x
Myung P.S., Takeo M., Ito M., Atit R.P. 2013. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. J. Invest. Dermatol., 133: 31-41. https://doi.org/10.1038/jid.2012.230
Person A.D., Garriock R.J., Krieg P.A., Runyan R.B., Klewer S.E. 2005. Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development. Develop. Biol., 278: 35-48. https://doi.org/10.1016/j.ydbio.2004.10.013
Petersen T.N., Brunak S., Heijne G.V., Nielsen H.H. 2011. SIGNALP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785-786. https://doi.org/10.1038/nmeth.1701
Qu Y., Li J.F., Cai Q., Wang Y.W., Gu Q.L., Zhu Z.G., Liu B.Y. 2008. Over-expression of FRZB in gastric cancer cell suppresses proliferation and induces differentiation. J. Cancer Res. Clin. Oncol., 134: 353-364. https://doi.org/10.1007/s00432-007-0291-0
Richardson S. 2005. Quantitative data analysis with SPSS 12 and 13: A guide for social scientists.
Saxena N., Mok K.W., Rendl M. 2019. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28: 332-344. https://doi.org/10.1111/exd.13913
Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Mínguez P., Doerks T., Stark M., Muller J., Bork P., Jensen L.J., Mering C.V. 2010. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 39: D561-D568. https://doi.org/10.1093/nar/gkq973
UniProt Consortium. 2009. The Universal Protein Resource (UniProt) 2009, Nucleic Acids Res., 37: D169–D174, https://doi.org/10.1093/nar/gkn664
Xiang M.J. 2011. Gene Regulation by Wnt Signaling Pathway in the Oriented Differentiation of Hair Follicle Stem Cells. J. Tissue Eng. Recons. Surg., 2011, 7: 290-294. https://www.qk.sjtu.edu.cn/jter/EN/Y2011/V7/I5/290
Zhao B., Chen Y., Yan X., Hao Y., Zhu J., Weng Q., Wu X.J. 2017. Gene expression profiling analysis reveals fur development in rex rabbits (Oryctolagus cuniculus). Genome, 60: 1060-1067. https://doi.org/10.1139/gen-2017-0003
Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J .Cell Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633
Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700
Zhu N., Lin E., Zhang H., Liu Y., Cao G., Fu C., Chen L., Zeng Y., Cai B., Yuan Y., Xia B., Huang K., Lin, C. 2020. LncRNA H19 Overexpression activates wnt signaling to maintain the hair follicle regeneration potential of dermal papilla cells. Front Genet., 11: 694. https://doi.org/10.3389/fgene.2020.00694
[-]