- -

The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway

Show full item record

Wang, F.; Zhang, X.; Dai, Y.; Zhao, B.; Wu, X.; Chen, Y. (2023). The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway. World Rabbit Science. 31(3):171-178. https://doi.org/10.4995/wrs.2023.18171

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199238

Files in this item

Item Metadata

Title: The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway
Author: Wang, Fan Zhang, Xiyu Dai, Yingying Zhao, Bohao Wu, Xinsheng Chen, Yang
Issued date:
Abstract:
[EN] To explore the mechanism of the FRZB gene in hair follicle development by regulating the Wnt/β-catenin signalling pathway, Angora rabbits were selected to collect back skin samples for the experiment. The action ...[+]
Subjects: FRZB gene , Hair follicle , Long-haired rabbit
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2023.18171
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/wrs.2023.18171
Project ID:
info:eu-repo/grantAgreement/NSFC//32072724
info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2021C02068-7
info:eu-repo/grantAgreement/Modern Agricultural Technology Industry System of Shandong province/CARS-43-A-1
Thanks:
Our study was funded by the National Natural Science Foundation of China (Grant No. 32072724), the Modern Agricultural Industrial System Special Funding (CARS-43-A-1) and the Zhejiang Science and Technology Major Programme ...[+]
Type: Artículo

References

Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT Signals Are Required for the Initiation of Hair Follicle Development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3

Cai C., Zhao G., Tian L., Liu L., Yan K., Ma Y., Ji Z., Li X., Han K., Gao J., Qiu X., Fan Q., Yang T., Ma B. 2012. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol. Rep., 28: 1764-1770. https://doi.org/10.3892/or.2012.1995

Chanda S., Robinette C.L., Couse J.F. 2000. 17betaestradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-alpha pathway. Am. J. Physiol.Endocrinol. Met., 278: E202-E210. https://doi.org/10.1152/ajpendo.2000.278.2.E202 [+]
Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT Signals Are Required for the Initiation of Hair Follicle Development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3

Cai C., Zhao G., Tian L., Liu L., Yan K., Ma Y., Ji Z., Li X., Han K., Gao J., Qiu X., Fan Q., Yang T., Ma B. 2012. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol. Rep., 28: 1764-1770. https://doi.org/10.3892/or.2012.1995

Chanda S., Robinette C.L., Couse J.F. 2000. 17betaestradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-alpha pathway. Am. J. Physiol.Endocrinol. Met., 278: E202-E210. https://doi.org/10.1152/ajpendo.2000.278.2.E202

Cong F., Schweizer L., Chamorro M., Varmus H. 2003. Requirement for a Nuclear Function of β-Catenin in Wnt Signaling. Mol. Cel. Biol., 23: 8462-8470. https://doi.org/10.1128/MCB.23.23.8462-8470.2003

Davies M.N., Gloriam D.E., Secker A., Freitas A.A., Timmis J., Flower D.R. 2011. Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level. Curr. Topi. Med. Chem., 11: 1994-2009. https://doi.org/10.2174/156802611796391221

Guo Y., Xie J., Rubin E., Tang Y.X., Lin F., Zi X., Bang H.H. 2008. Frzb, a Secreted Wnt Antagonist, Decreases Growth and Invasiveness of Fibrosarcoma Cells Associated with Inhibition of Met Signaling. Cancer Res., 68: 3350-3360. https://doi.org/10.1158/0008-5472.CAN-07-3220

Hardy R., Juarez M., Naylor A., Tu J., Rabbitt E.H., Filer A., Stewart P.M., Buckley C.D., Raza K., Cooper M.S. 2012. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis. Arthritis Res. Ther., 14: R226. https://doi.org/10.1186/ar4065

Hoang B., Moos M., Vukicevic S., Luyten F.P. 1996. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem., 271: 26131-26137.

Kim B.K., Yoon S.K. 2014. Expression of Sfrp2 Is Increased in Catagen of Hair Follicles and Inhibits Keratinocyte Proliferation, Ann Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79

Krause K., Foitzik K. 2006. Biology of the Hair Follicle: The Basics. In: Seminars in cutaneous medicine and surgery. Philadelphia, PA: WB Saunders Co., vol. 25, no. 1, pp. 2-10. https://doi.org/10.1016/j.sder.2006.01.002

Kwack M.H., Kim M.K., Kim J.C., Sung Y.K. 2012. Dickkopf 1 Promotes Regression of Hair Follicles. J. Invest. Dermatol. 132: 1554-1560. https://doi.org/10.1038/jid.2012.24

Lazareno S. 1994. GraphPad Prism (version 1.02). Trends Pharmacol. Sci., 15: 353-354. https://doi.org/10.1016/0165-6147(94)90038-8

Leyns L., Bouwmeester T., Kim S.H., Piccolo S., de Robertis E. 1997. Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer. Cell, 88: 747-756. https://doi.org/10.1016/S0092-8674(00)81921-2

Livak K.J., Schmittgen T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25: 402-408. https://doi.org/10.1006/meth.2001.1262

MacPhail S., Thomas T., Wilkinson R., Davison J.M., Dunlop W. 1989. Decreased plasma osmolality in human pregnancy is secondary to a reduction in intracellular osmoles. Clinical Sci., 77: 29P-30P. https://doi.org/10.1042/cs077029Pc

Maier H., Meixner M., Hartmann D., Sandhoff R., Wang-Eckhardt L., Zoller I., Gieselmann V., Eckhardt M.J. 2011. Normal Fur Development and Sebum Production Depends on Fatty Acid 2-Hydroxylase Expression in Sebaceous Glands. J. Biol. Chem., 286: 25922-25934. https://doi.org/10.1074/jbc.M111.231977

O'Shaughnessy R.F., Christiano A.M., Jahoda C.A.B. 2004. The role of BMP signalling in the control of ID3 expression in the hair follicle. Exp. Dermatol., 13: 621-629. https://doi.org/10.1111/j.0906-6705.2004.00206.x

Payne D.M., Rossomando A.J., Martino P., Erickson A.K., Sturgill T.W. 1991. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). The EMBO journal. 10: 885-892. https://doi.org/10.1002/j.1460-2075.1991.tb08021.x

Myung P.S., Takeo M., Ito M., Atit R.P. 2013. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. J. Invest. Dermatol., 133: 31-41. https://doi.org/10.1038/jid.2012.230

Person A.D., Garriock R.J., Krieg P.A., Runyan R.B., Klewer S.E. 2005. Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development. Develop. Biol., 278: 35-48. https://doi.org/10.1016/j.ydbio.2004.10.013

Petersen T.N., Brunak S., Heijne G.V., Nielsen H.H. 2011. SIGNALP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785-786. https://doi.org/10.1038/nmeth.1701

Qu Y., Li J.F., Cai Q., Wang Y.W., Gu Q.L., Zhu Z.G., Liu B.Y. 2008. Over-expression of FRZB in gastric cancer cell suppresses proliferation and induces differentiation. J. Cancer Res. Clin. Oncol., 134: 353-364. https://doi.org/10.1007/s00432-007-0291-0

Richardson S. 2005. Quantitative data analysis with SPSS 12 and 13: A guide for social scientists.

Saxena N., Mok K.W., Rendl M. 2019. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28: 332-344. https://doi.org/10.1111/exd.13913

Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Mínguez P., Doerks T., Stark M., Muller J., Bork P., Jensen L.J., Mering C.V. 2010. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 39: D561-D568. https://doi.org/10.1093/nar/gkq973

UniProt Consortium. 2009. The Universal Protein Resource (UniProt) 2009, Nucleic Acids Res., 37: D169–D174, https://doi.org/10.1093/nar/gkn664

Xiang M.J. 2011. Gene Regulation by Wnt Signaling Pathway in the Oriented Differentiation of Hair Follicle Stem Cells. J. Tissue Eng. Recons. Surg., 2011, 7: 290-294. https://www.qk.sjtu.edu.cn/jter/EN/Y2011/V7/I5/290

Zhao B., Chen Y., Yan X., Hao Y., Zhu J., Weng Q., Wu X.J. 2017. Gene expression profiling analysis reveals fur development in rex rabbits (Oryctolagus cuniculus). Genome, 60: 1060-1067. https://doi.org/10.1139/gen-2017-0003

Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J .Cell Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633

Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700

Zhu N., Lin E., Zhang H., Liu Y., Cao G., Fu C., Chen L., Zeng Y., Cai B., Yuan Y., Xia B., Huang K., Lin, C. 2020. LncRNA H19 Overexpression activates wnt signaling to maintain the hair follicle regeneration potential of dermal papilla cells. Front Genet., 11: 694. https://doi.org/10.3389/fgene.2020.00694

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record