Mostrar el registro sencillo del ítem
dc.contributor.author | Wang, Fan | es_ES |
dc.contributor.author | Zhang, Xiyu | es_ES |
dc.contributor.author | Dai, Yingying | es_ES |
dc.contributor.author | Zhao, Bohao | es_ES |
dc.contributor.author | Wu, Xinsheng | es_ES |
dc.contributor.author | Chen, Yang | es_ES |
dc.date.accessioned | 2023-11-06T09:02:53Z | |
dc.date.available | 2023-11-06T09:02:53Z | |
dc.date.issued | 2023-09-28 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/199238 | |
dc.description.abstract | [EN] To explore the mechanism of the FRZB gene in hair follicle development by regulating the Wnt/β-catenin signalling pathway, Angora rabbits were selected to collect back skin samples for the experiment. The action mechanism is understood by cell culture and transfection, apoptosis and proliferation assays and TOP/FOP Flash Wnt Reporting System methods. The results showed that the interference and overexpression of the FRZB gene in rabbit dermal papilla cells indicated that overexpression could inhibit the expression of SFRP2, BMP4, and WNT2 genes (P<0.05). On the contrary, the expression of Wnt signalling pathway-related genes LEF1, CCND1, DKK1, and TCF7 was significantly up-regulated (P<0.05). Further examination of the luciferase reporter system TOP/FOP revealed that pcDNA3.1-FRZB inhibits Wnt activity. PcDNA3.1-FRZB was found to promote the level of apoptosis in DP cells, whereas si-FRZB inhibited DP cell proliferation. Therefore, it is concluded that FRZB inhibits hair follicle development in long-haired rabbits by regulating the Wnt/β-catenin signalling pathway. | es_ES |
dc.description.sponsorship | Our study was funded by the National Natural Science Foundation of China (Grant No. 32072724), the Modern Agricultural Industrial System Special Funding (CARS-43-A-1) and the Zhejiang Science and Technology Major Programme on Agricultural New Variety Breeding (2021C02068-7). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | World Rabbit Science | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | FRZB gene | es_ES |
dc.subject | Hair follicle | es_ES |
dc.subject | Long-haired rabbit | es_ES |
dc.title | The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/wrs.2023.18171 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//32072724 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2021C02068-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Modern Agricultural Technology Industry System of Shandong province/CARS-43-A-1 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Wang, F.; Zhang, X.; Dai, Y.; Zhao, B.; Wu, X.; Chen, Y. (2023). The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway. World Rabbit Science. 31(3):171-178. https://doi.org/10.4995/wrs.2023.18171 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2023.18171 | es_ES |
dc.description.upvformatpinicio | 171 | es_ES |
dc.description.upvformatpfin | 178 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1989-8886 | |
dc.relation.pasarela | OJS\18171 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Science and Technology Department of Zhejiang Province | es_ES |
dc.contributor.funder | Modern Agricultural Technology Industry System of Shandong province | es_ES |
dc.description.references | Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT Signals Are Required for the Initiation of Hair Follicle Development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3 | es_ES |
dc.description.references | Cai C., Zhao G., Tian L., Liu L., Yan K., Ma Y., Ji Z., Li X., Han K., Gao J., Qiu X., Fan Q., Yang T., Ma B. 2012. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol. Rep., 28: 1764-1770. https://doi.org/10.3892/or.2012.1995 | es_ES |
dc.description.references | Chanda S., Robinette C.L., Couse J.F. 2000. 17betaestradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-alpha pathway. Am. J. Physiol.Endocrinol. Met., 278: E202-E210. https://doi.org/10.1152/ajpendo.2000.278.2.E202 | es_ES |
dc.description.references | Cong F., Schweizer L., Chamorro M., Varmus H. 2003. Requirement for a Nuclear Function of β-Catenin in Wnt Signaling. Mol. Cel. Biol., 23: 8462-8470. https://doi.org/10.1128/MCB.23.23.8462-8470.2003 | es_ES |
dc.description.references | Davies M.N., Gloriam D.E., Secker A., Freitas A.A., Timmis J., Flower D.R. 2011. Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level. Curr. Topi. Med. Chem., 11: 1994-2009. https://doi.org/10.2174/156802611796391221 | es_ES |
dc.description.references | Guo Y., Xie J., Rubin E., Tang Y.X., Lin F., Zi X., Bang H.H. 2008. Frzb, a Secreted Wnt Antagonist, Decreases Growth and Invasiveness of Fibrosarcoma Cells Associated with Inhibition of Met Signaling. Cancer Res., 68: 3350-3360. https://doi.org/10.1158/0008-5472.CAN-07-3220 | es_ES |
dc.description.references | Hardy R., Juarez M., Naylor A., Tu J., Rabbitt E.H., Filer A., Stewart P.M., Buckley C.D., Raza K., Cooper M.S. 2012. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis. Arthritis Res. Ther., 14: R226. https://doi.org/10.1186/ar4065 | es_ES |
dc.description.references | Hoang B., Moos M., Vukicevic S., Luyten F.P. 1996. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem., 271: 26131-26137. | es_ES |
dc.description.references | Kim B.K., Yoon S.K. 2014. Expression of Sfrp2 Is Increased in Catagen of Hair Follicles and Inhibits Keratinocyte Proliferation, Ann Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79 | es_ES |
dc.description.references | Krause K., Foitzik K. 2006. Biology of the Hair Follicle: The Basics. In: Seminars in cutaneous medicine and surgery. Philadelphia, PA: WB Saunders Co., vol. 25, no. 1, pp. 2-10. https://doi.org/10.1016/j.sder.2006.01.002 | es_ES |
dc.description.references | Kwack M.H., Kim M.K., Kim J.C., Sung Y.K. 2012. Dickkopf 1 Promotes Regression of Hair Follicles. J. Invest. Dermatol. 132: 1554-1560. https://doi.org/10.1038/jid.2012.24 | es_ES |
dc.description.references | Lazareno S. 1994. GraphPad Prism (version 1.02). Trends Pharmacol. Sci., 15: 353-354. https://doi.org/10.1016/0165-6147(94)90038-8 | es_ES |
dc.description.references | Leyns L., Bouwmeester T., Kim S.H., Piccolo S., de Robertis E. 1997. Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer. Cell, 88: 747-756. https://doi.org/10.1016/S0092-8674(00)81921-2 | es_ES |
dc.description.references | Livak K.J., Schmittgen T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25: 402-408. https://doi.org/10.1006/meth.2001.1262 | es_ES |
dc.description.references | MacPhail S., Thomas T., Wilkinson R., Davison J.M., Dunlop W. 1989. Decreased plasma osmolality in human pregnancy is secondary to a reduction in intracellular osmoles. Clinical Sci., 77: 29P-30P. https://doi.org/10.1042/cs077029Pc | es_ES |
dc.description.references | Maier H., Meixner M., Hartmann D., Sandhoff R., Wang-Eckhardt L., Zoller I., Gieselmann V., Eckhardt M.J. 2011. Normal Fur Development and Sebum Production Depends on Fatty Acid 2-Hydroxylase Expression in Sebaceous Glands. J. Biol. Chem., 286: 25922-25934. https://doi.org/10.1074/jbc.M111.231977 | es_ES |
dc.description.references | O'Shaughnessy R.F., Christiano A.M., Jahoda C.A.B. 2004. The role of BMP signalling in the control of ID3 expression in the hair follicle. Exp. Dermatol., 13: 621-629. https://doi.org/10.1111/j.0906-6705.2004.00206.x | es_ES |
dc.description.references | Payne D.M., Rossomando A.J., Martino P., Erickson A.K., Sturgill T.W. 1991. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). The EMBO journal. 10: 885-892. https://doi.org/10.1002/j.1460-2075.1991.tb08021.x | es_ES |
dc.description.references | Myung P.S., Takeo M., Ito M., Atit R.P. 2013. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. J. Invest. Dermatol., 133: 31-41. https://doi.org/10.1038/jid.2012.230 | es_ES |
dc.description.references | Person A.D., Garriock R.J., Krieg P.A., Runyan R.B., Klewer S.E. 2005. Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development. Develop. Biol., 278: 35-48. https://doi.org/10.1016/j.ydbio.2004.10.013 | es_ES |
dc.description.references | Petersen T.N., Brunak S., Heijne G.V., Nielsen H.H. 2011. SIGNALP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785-786. https://doi.org/10.1038/nmeth.1701 | es_ES |
dc.description.references | Qu Y., Li J.F., Cai Q., Wang Y.W., Gu Q.L., Zhu Z.G., Liu B.Y. 2008. Over-expression of FRZB in gastric cancer cell suppresses proliferation and induces differentiation. J. Cancer Res. Clin. Oncol., 134: 353-364. https://doi.org/10.1007/s00432-007-0291-0 | es_ES |
dc.description.references | Richardson S. 2005. Quantitative data analysis with SPSS 12 and 13: A guide for social scientists. | es_ES |
dc.description.references | Saxena N., Mok K.W., Rendl M. 2019. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28: 332-344. https://doi.org/10.1111/exd.13913 | es_ES |
dc.description.references | Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Mínguez P., Doerks T., Stark M., Muller J., Bork P., Jensen L.J., Mering C.V. 2010. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 39: D561-D568. https://doi.org/10.1093/nar/gkq973 | es_ES |
dc.description.references | UniProt Consortium. 2009. The Universal Protein Resource (UniProt) 2009, Nucleic Acids Res., 37: D169–D174, https://doi.org/10.1093/nar/gkn664 | es_ES |
dc.description.references | Xiang M.J. 2011. Gene Regulation by Wnt Signaling Pathway in the Oriented Differentiation of Hair Follicle Stem Cells. J. Tissue Eng. Recons. Surg., 2011, 7: 290-294. https://www.qk.sjtu.edu.cn/jter/EN/Y2011/V7/I5/290 | es_ES |
dc.description.references | Zhao B., Chen Y., Yan X., Hao Y., Zhu J., Weng Q., Wu X.J. 2017. Gene expression profiling analysis reveals fur development in rex rabbits (Oryctolagus cuniculus). Genome, 60: 1060-1067. https://doi.org/10.1139/gen-2017-0003 | es_ES |
dc.description.references | Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J .Cell Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633 | es_ES |
dc.description.references | Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700 | es_ES |
dc.description.references | Zhu N., Lin E., Zhang H., Liu Y., Cao G., Fu C., Chen L., Zeng Y., Cai B., Yuan Y., Xia B., Huang K., Lin, C. 2020. LncRNA H19 Overexpression activates wnt signaling to maintain the hair follicle regeneration potential of dermal papilla cells. Front Genet., 11: 694. https://doi.org/10.3389/fgene.2020.00694 | es_ES |