- -

The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Fan es_ES
dc.contributor.author Zhang, Xiyu es_ES
dc.contributor.author Dai, Yingying es_ES
dc.contributor.author Zhao, Bohao es_ES
dc.contributor.author Wu, Xinsheng es_ES
dc.contributor.author Chen, Yang es_ES
dc.date.accessioned 2023-11-06T09:02:53Z
dc.date.available 2023-11-06T09:02:53Z
dc.date.issued 2023-09-28
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/199238
dc.description.abstract [EN] To explore the mechanism of the FRZB gene in hair follicle development by regulating the Wnt/β-catenin signalling pathway, Angora rabbits were selected to collect back skin samples for the experiment. The action mechanism is understood by cell culture and transfection, apoptosis and proliferation assays and TOP/FOP Flash Wnt Reporting System methods. The results showed that the interference and overexpression of the FRZB gene in rabbit dermal papilla cells indicated that overexpression could inhibit the expression of SFRP2, BMP4, and WNT2 genes (P<0.05). On the contrary, the expression of Wnt signalling pathway-related genes LEF1, CCND1, DKK1, and TCF7 was significantly up-regulated (P<0.05). Further examination of the luciferase reporter system TOP/FOP revealed that pcDNA3.1-FRZB inhibits Wnt activity. PcDNA3.1-FRZB was found to promote the level of apoptosis in DP cells, whereas si-FRZB inhibited DP cell proliferation. Therefore, it is concluded that FRZB inhibits hair follicle development in long-haired rabbits by regulating the Wnt/β-catenin signalling pathway. es_ES
dc.description.sponsorship Our study was funded by the National Natural Science Foundation of China (Grant No. 32072724), the Modern Agricultural Industrial System Special Funding (CARS-43-A-1) and the Zhejiang Science and Technology Major Programme on Agricultural New Variety Breeding (2021C02068-7). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject FRZB gene es_ES
dc.subject Hair follicle es_ES
dc.subject Long-haired rabbit es_ES
dc.title The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2023.18171
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//32072724 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2021C02068-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Modern Agricultural Technology Industry System of Shandong province/CARS-43-A-1 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Wang, F.; Zhang, X.; Dai, Y.; Zhao, B.; Wu, X.; Chen, Y. (2023). The FRZB gene regulates hair follicle development in rabbits via the Wnt/B-catenin signaling pathway. World Rabbit Science. 31(3):171-178. https://doi.org/10.4995/wrs.2023.18171 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2023.18171 es_ES
dc.description.upvformatpinicio 171 es_ES
dc.description.upvformatpfin 178 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\18171 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Science and Technology Department of Zhejiang Province es_ES
dc.contributor.funder Modern Agricultural Technology Industry System of Shandong province es_ES
dc.description.references Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT Signals Are Required for the Initiation of Hair Follicle Development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3 es_ES
dc.description.references Cai C., Zhao G., Tian L., Liu L., Yan K., Ma Y., Ji Z., Li X., Han K., Gao J., Qiu X., Fan Q., Yang T., Ma B. 2012. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol. Rep., 28: 1764-1770. https://doi.org/10.3892/or.2012.1995 es_ES
dc.description.references Chanda S., Robinette C.L., Couse J.F. 2000. 17betaestradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-alpha pathway. Am. J. Physiol.Endocrinol. Met., 278: E202-E210. https://doi.org/10.1152/ajpendo.2000.278.2.E202 es_ES
dc.description.references Cong F., Schweizer L., Chamorro M., Varmus H. 2003. Requirement for a Nuclear Function of β-Catenin in Wnt Signaling. Mol. Cel. Biol., 23: 8462-8470. https://doi.org/10.1128/MCB.23.23.8462-8470.2003 es_ES
dc.description.references Davies M.N., Gloriam D.E., Secker A., Freitas A.A., Timmis J., Flower D.R. 2011. Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level. Curr. Topi. Med. Chem., 11: 1994-2009. https://doi.org/10.2174/156802611796391221 es_ES
dc.description.references Guo Y., Xie J., Rubin E., Tang Y.X., Lin F., Zi X., Bang H.H. 2008. Frzb, a Secreted Wnt Antagonist, Decreases Growth and Invasiveness of Fibrosarcoma Cells Associated with Inhibition of Met Signaling. Cancer Res., 68: 3350-3360. https://doi.org/10.1158/0008-5472.CAN-07-3220 es_ES
dc.description.references Hardy R., Juarez M., Naylor A., Tu J., Rabbitt E.H., Filer A., Stewart P.M., Buckley C.D., Raza K., Cooper M.S. 2012. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis. Arthritis Res. Ther., 14: R226. https://doi.org/10.1186/ar4065 es_ES
dc.description.references Hoang B., Moos M., Vukicevic S., Luyten F.P. 1996. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J. Biol. Chem., 271: 26131-26137. es_ES
dc.description.references Kim B.K., Yoon S.K. 2014. Expression of Sfrp2 Is Increased in Catagen of Hair Follicles and Inhibits Keratinocyte Proliferation, Ann Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79 es_ES
dc.description.references Krause K., Foitzik K. 2006. Biology of the Hair Follicle: The Basics. In: Seminars in cutaneous medicine and surgery. Philadelphia, PA: WB Saunders Co., vol. 25, no. 1, pp. 2-10. https://doi.org/10.1016/j.sder.2006.01.002 es_ES
dc.description.references Kwack M.H., Kim M.K., Kim J.C., Sung Y.K. 2012. Dickkopf 1 Promotes Regression of Hair Follicles. J. Invest. Dermatol. 132: 1554-1560. https://doi.org/10.1038/jid.2012.24 es_ES
dc.description.references Lazareno S. 1994. GraphPad Prism (version 1.02). Trends Pharmacol. Sci., 15: 353-354. https://doi.org/10.1016/0165-6147(94)90038-8 es_ES
dc.description.references Leyns L., Bouwmeester T., Kim S.H., Piccolo S., de Robertis E. 1997. Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer. Cell, 88: 747-756. https://doi.org/10.1016/S0092-8674(00)81921-2 es_ES
dc.description.references Livak K.J., Schmittgen T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25: 402-408. https://doi.org/10.1006/meth.2001.1262 es_ES
dc.description.references MacPhail S., Thomas T., Wilkinson R., Davison J.M., Dunlop W. 1989. Decreased plasma osmolality in human pregnancy is secondary to a reduction in intracellular osmoles. Clinical Sci., 77: 29P-30P. https://doi.org/10.1042/cs077029Pc es_ES
dc.description.references Maier H., Meixner M., Hartmann D., Sandhoff R., Wang-Eckhardt L., Zoller I., Gieselmann V., Eckhardt M.J. 2011. Normal Fur Development and Sebum Production Depends on Fatty Acid 2-Hydroxylase Expression in Sebaceous Glands. J. Biol. Chem., 286: 25922-25934. https://doi.org/10.1074/jbc.M111.231977 es_ES
dc.description.references O'Shaughnessy R.F., Christiano A.M., Jahoda C.A.B. 2004. The role of BMP signalling in the control of ID3 expression in the hair follicle. Exp. Dermatol., 13: 621-629. https://doi.org/10.1111/j.0906-6705.2004.00206.x es_ES
dc.description.references Payne D.M., Rossomando A.J., Martino P., Erickson A.K., Sturgill T.W. 1991. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). The EMBO journal. 10: 885-892. https://doi.org/10.1002/j.1460-2075.1991.tb08021.x es_ES
dc.description.references Myung P.S., Takeo M., Ito M., Atit R.P. 2013. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. J. Invest. Dermatol., 133: 31-41. https://doi.org/10.1038/jid.2012.230 es_ES
dc.description.references Person A.D., Garriock R.J., Krieg P.A., Runyan R.B., Klewer S.E. 2005. Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development. Develop. Biol., 278: 35-48. https://doi.org/10.1016/j.ydbio.2004.10.013 es_ES
dc.description.references Petersen T.N., Brunak S., Heijne G.V., Nielsen H.H. 2011. SIGNALP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785-786. https://doi.org/10.1038/nmeth.1701 es_ES
dc.description.references Qu Y., Li J.F., Cai Q., Wang Y.W., Gu Q.L., Zhu Z.G., Liu B.Y. 2008. Over-expression of FRZB in gastric cancer cell suppresses proliferation and induces differentiation. J. Cancer Res. Clin. Oncol., 134: 353-364. https://doi.org/10.1007/s00432-007-0291-0 es_ES
dc.description.references Richardson S. 2005. Quantitative data analysis with SPSS 12 and 13: A guide for social scientists. es_ES
dc.description.references Saxena N., Mok K.W., Rendl M. 2019. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28: 332-344. https://doi.org/10.1111/exd.13913 es_ES
dc.description.references Szklarczyk D., Franceschini A., Kuhn M., Simonovic M., Roth A., Mínguez P., Doerks T., Stark M., Muller J., Bork P., Jensen L.J., Mering C.V. 2010. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 39: D561-D568. https://doi.org/10.1093/nar/gkq973 es_ES
dc.description.references UniProt Consortium. 2009. The Universal Protein Resource (UniProt) 2009, Nucleic Acids Res., 37: D169–D174, https://doi.org/10.1093/nar/gkn664 es_ES
dc.description.references Xiang M.J. 2011. Gene Regulation by Wnt Signaling Pathway in the Oriented Differentiation of Hair Follicle Stem Cells. J. Tissue Eng. Recons. Surg., 2011, 7: 290-294. https://www.qk.sjtu.edu.cn/jter/EN/Y2011/V7/I5/290 es_ES
dc.description.references Zhao B., Chen Y., Yan X., Hao Y., Zhu J., Weng Q., Wu X.J. 2017. Gene expression profiling analysis reveals fur development in rex rabbits (Oryctolagus cuniculus). Genome, 60: 1060-1067. https://doi.org/10.1139/gen-2017-0003 es_ES
dc.description.references Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J .Cell Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633 es_ES
dc.description.references Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700 es_ES
dc.description.references Zhu N., Lin E., Zhang H., Liu Y., Cao G., Fu C., Chen L., Zeng Y., Cai B., Yuan Y., Xia B., Huang K., Lin, C. 2020. LncRNA H19 Overexpression activates wnt signaling to maintain the hair follicle regeneration potential of dermal papilla cells. Front Genet., 11: 694. https://doi.org/10.3389/fgene.2020.00694 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem