- -

Evaluación del comportamiento de una sonda aire-agua en un banco de calibración de equipos de medición de flujos bifásicos

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Evaluación del comportamiento de una sonda aire-agua en un banco de calibración de equipos de medición de flujos bifásicos

Show full item record

Ros-Bernal, A.; Carrillo, JM.; García, JT.; Castillo, LG. (2023). Evaluación del comportamiento de una sonda aire-agua en un banco de calibración de equipos de medición de flujos bifásicos. Ingeniería del Agua. 27(4):269-281. https://doi.org/10.4995/ia.2023.20038

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199283

Files in this item

Item Metadata

Title: Evaluación del comportamiento de una sonda aire-agua en un banco de calibración de equipos de medición de flujos bifásicos
Secondary Title: Assessment of the performance of an air-water probe on a calibration bench for two-phase flow measurement equipment
Author: Ros-Bernal, Alicia Carrillo, José M. García, Juan T. Castillo, Luis G.
Issued date:
Abstract:
[EN] Despite significant advances in the study of two-phase water-air flows, there are doubts about the accuracy of experimental campaigns, as equipment often tend to ignore the calibration phase. The limitations inherent ...[+]


[ES] A pesar de los avances significativos logrados en el estudio de los flujos bifásicos agua-aire, existen dudas acerca de la precisión de las campañas experimentales puesto que los equipos suelen obviar la fase de ...[+]
Subjects: Two-phase flow , Calibration bench , Air-water probe , Optical fiber , Flujo bifásico , Banco de calibración , Sonda aire-agua , Fibra óptica
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.20038
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ia.2023.20038
Project ID:
info:eu-repo/grantAgreement/f SéNeCa//21592%2FFPI%2F21
Thanks:
La primera autora expresa su agradecimiento por la ayuda económica recibida de la “Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia” para la formación de personal investigador, beca número 21592/FPI/21.[+]
Type: Artículo

References

Bachalo, W.D. 1994. Experimental methods in multiphase flows. International Journal of Multiphase Flow, 20, 261-295. https://doi.org/10.1016/0301-9322(94)90075-2

Bachmeier, G. 1988. Setup, calibration and use of a measuring probe for determination of air concentration in a spillway chute. Diploma dissertation, Institute for Hydromechanics of Karlsruhe University, Karlsruhe, Germany (translated from the German original by Duncan Anderson, USBR).

Boes, R.M., Hager, W.H. 1998. Fiber-optical experimentation in two-phase cascade flow. Proc. Int. RCC Dams Seminar, Ed. K. Hansen, Denver, EUA. [+]
Bachalo, W.D. 1994. Experimental methods in multiphase flows. International Journal of Multiphase Flow, 20, 261-295. https://doi.org/10.1016/0301-9322(94)90075-2

Bachmeier, G. 1988. Setup, calibration and use of a measuring probe for determination of air concentration in a spillway chute. Diploma dissertation, Institute for Hydromechanics of Karlsruhe University, Karlsruhe, Germany (translated from the German original by Duncan Anderson, USBR).

Boes, R.M., Hager, W.H. 1998. Fiber-optical experimentation in two-phase cascade flow. Proc. Int. RCC Dams Seminar, Ed. K. Hansen, Denver, EUA.

Borges, J.E., Pereira N., Matos J., Frizell K.W. 2010. Performance of a combined three hole conductivity probe for void fraction and velocity measurement in air–water flows. Experiments in Fluids, 48, 17-31. https://doi.org/10.1007/s00348-009-0699-1

Boyer, C., Duquenne, A.M., Wild, G. 2002. Measuring techniques in gas–liquid and gas–liquid–solid reactors, Chemical Engineering Science, 57, 3185-3215. https://doi.org/10.1016/S0009-2509(02)00193-8

Cain, P. 1978. Measurements within self-aerated flow on a large spillway, Res. Rep. No. 78-18, Univ. of Canterbury, Christchurch, New Zealand.

Cartellier, A., Achard, J.L. 1991. Local phase detection probes in fluid/fluid two-phase flows, Review of Scientific Instruments, 62, 279-303. https://doi.org/10.1063/1.1142117

Chanson, H. 2002. Air-Water Flow Measurement with Intrusive, Phase-Detection Probes: Can We Improve Their Interpretation?, Journal of Hydraulic Engineering, 128(3), 1-4. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(252)

Chanson, H. 2007. Dynamic similarity and scale effects affecting air bubble entrainment in hydraulic jumps. In: 6th Intl. Conf. Multiphase Flow, ICMF, Leipzig, Germany, 9–13, July 2007.

Chanson, H., 2016. Phase-detection measurements in free-surface turbulent shear flows. Journal of Geophysics and Engineering, 13, 74-87. https://doi.org/10.1088/1742-2132/13/2/S74

Felder, S., Chanson, H. 2015. Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters. Experimental Thermal and Fluid Science, 61, 66-78. https://doi.org/10.1016/j.expthermflusci.2014.10.009

Frizell, K.H., Ehler, D.G., Mefford, B.W. 1994. Developing air concentration and velocity probes for measuring in highly-aerated, high-velocity flow. Proc. Hyd. Engrg. Conf., ASCE, Buffalo, N.Y., pp. 268-277.

Hohermuth, B., Kramer, M., Felder, S., Valero, D. 2021. Velocity bias in intrusive gas-liquid flow measurements. Nature Communications, 12, 4123. https://doi.org/10.1038/s41467-021-24231-4

Kramer, M., Hohermuth, B., Valero, D., Felder, S. 2020. Best practices for velocity estimations in highly aerated flows with dual-tip phasedetection probes. International Journal of Multiphase Flow, 126, 103228. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103228

Kramer, M., Valero, D., Chanson, H., Bung, D.B. 2019. Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique. Experiments in Fluids, 60, 1-6. https://doi.org/10.1007/s00348-018-2650-9

Matos, J., Frizell, K.H. 1997. Air concentration measurements in highly turbulent aerated flow. Proc. 28th IAHR Congress. Theme D, Vol. 1, Ed. Sam S.Y. Wang and Torkild Carstens, San Francisco, USA, pp. 149-154.

Matos, J., Frizell, K.H., André, S., & Frizell, K.W. 2002. On the performance of velocity measurement techniques in air-water flows. In: Proceedings of hydraulic measurements and experimental methods 2002 conference, EWRI-ASCE/IAHR, Estes Park, Colorado, USA (CD-ROM). https://doi.org/10.1061/40655(2002)58

Nagash, B.W. (1994). Void fraction measurement techniques for gas-liquid bubbly flows in closed conduits: A literature review. Proc. Hyd. Engrg. Conf., ASCE, Buffalo, N.Y., pp. 278-288.

Ortega, P.R. 2021. Análisis de la lámina vertiente en el sobrevertido de presas de fábrica. Doctoral Thesis. Universidad Politécnica de Cartagena (in Spanish).

RBI Instrumentation et Mesure: User’s Guide, Two-Phase Flow equipment with ATL unit. Chemin du Vieux Chene -F-38240 Meylan, France, 2013.

Valero, D., Bung, D.B. 2018. Artificial neural networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe. Journal of Hydro-environment Research, 19, 150-159. https://doi.org/10.1016/j.jher.2017.08.004

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record