Mostrar el registro sencillo del ítem
dc.contributor.author | Modini, Laura | es_ES |
dc.contributor.author | Pizarro, Ana | es_ES |
dc.contributor.author | Zerbatto, Mariel | es_ES |
dc.date.accessioned | 2023-11-06T12:04:25Z | |
dc.date.available | 2023-11-06T12:04:25Z | |
dc.date.issued | 2023-10-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/199284 | |
dc.description.abstract | [EN] The efficiency of a constructed wetland coupled with a microbial fuel cell (CW-MFC), at a micropilot scale, was evaluated to treat real urban wastewater (UWW) and generate electricity by action of electroactive bacteria that oxidize organic matter. For this purpose, a vertical up-flow wetland was constructed and 2 graphite electrodes connected to an external 1000-ohm resistor were attached to it. CW-MFC was continuously fed with settled UWW for 4 months. The hydraulic residence time was 1.2 d. The quality of the influent UWW and the treated effluent was evaluated weekly. The voltage produced was recorded every 10 min. The average removal efficiencies achieved were 95.8 % turbidity, 77.5 % COD, 75.7 % total suspended solids, and 96.1 % E. coli, 5.7 % total reactive phosphorus and 18.3 % ammonium. CW-MFC produced electricity continuously, with yields of up to 30.5 W·h/kg COD removed. | es_ES |
dc.description.abstract | [ES] Se evaluó la eficiencia de un humedal construido acoplado con una celda de combustible microbiana (HC-CCM), a escala micropiloto, para tratar agua residual urbana real (ARU) y generar electricidad por acción de bacterias electroactivas que oxidan la materia orgánica. Para ello se construyó un humedal vertical de flujo ascendente al que se integraron 2 electrodos de grafito conectados a una resistencia externa de 1000 ohm. HC-CCM se alimentó continuamente con ARU sedimentada durante 4 meses. El tiempo de residencia hidráulico fue de 1.2 d. Semanalmente, se evaluó la calidad del ARU influente y del efluente tratado. El voltaje producido se registró cada 10 min. Las eficiencias de remoción medias logradas fueron: 95.8% turbiedad, 77.5% DQO, 75.7% sólidos suspendidos totales, 96.1% E. coli, 5.7% fósforo reactivo total y 18.3% amonio. HC-CCM produjo electricidad de forma continua, con rendimientos de hasta 30.5 W·h/kg DQO removida. | es_ES |
dc.description.sponsorship | Los autores agradecen a la Universidad Nacional del Litoral por financiar esta investigación mediante el Programa Curso de Acción para la Investigación y Desarrollo (CAI+D), convocatoria 2020, Resolución C.S. N° 400/19. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Constructed wetland | es_ES |
dc.subject | Microbial fuel cell | es_ES |
dc.subject | Real sewage | es_ES |
dc.subject | Treatment efficiency | es_ES |
dc.subject | Bioelectricity | es_ES |
dc.subject | Humedal construido | es_ES |
dc.subject | Celda de combustible microbiana | es_ES |
dc.subject | Agua residual real | es_ES |
dc.subject | Eficiencia de tratamiento | es_ES |
dc.subject | Bioelectricidad | es_ES |
dc.title | Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana | es_ES |
dc.title.alternative | Sustainable treatment of urban wastewater using a constructed wetland coupled with a microbial fuel cell | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.20318 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Modini, L.; Pizarro, A.; Zerbatto, M. (2023). Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana. Ingeniería del Agua. 27(4):283-293. https://doi.org/10.4995/ia.2023.20318 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.20318 | es_ES |
dc.description.upvformatpinicio | 283 | es_ES |
dc.description.upvformatpfin | 293 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\20318 | es_ES |
dc.contributor.funder | Universidad Nacional del Litoral, Argentina | es_ES |
dc.description.references | APHA, AWWA, WEF. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, USA. | es_ES |
dc.description.references | APHA, AWWA, WPCF. 1992. Métodos Normalizados para el Análisis de aguas potables y residuales. Ediciones Díaz de Santos, Madrid, España. | es_ES |
dc.description.references | BID, CEPAL. 2018. Proceso regional de las américas. Foro mundial del agua 2018. Informe Regional América Latina y el Caribe: Resumen ejecutivo 2018. Banco Interamericano de Desarrollo, Comisión Económica para América Latina y el Caribe, USA. | es_ES |
dc.description.references | Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., Vidal, G. 2017. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecological Engineering, 99, 246-255. https://doi.org/10.1016/j.ecoleng.2016.11.058 | es_ES |
dc.description.references | Directiva 91/271/CEE, de 21 de mayo de 1991, sobre el tratamiento de las aguas residuales urbanas. DOCE, 135, de 30 de mayo de 1991. https://www.boe.es/buscar/doc.php?id=DOUE-L-1991-80646 | es_ES |
dc.description.references | Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., Liu, R. 2015a. A review of a recently emerged technology: Constructed wetland - Microbial fuel cells. Water Research, 85, 38-45. https://doi.org/10.1016/j.watres.2015.08.016 | es_ES |
dc.description.references | Doherty, L., Zhao, Y., Zhao, X., Wang, W. 2015b. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecological Engineering, 79, 8-14. https://doi.org/10.1016/j.ecoleng.2015.03.004 | es_ES |
dc.description.references | Doherty, L., Zhao, Y., Zhao, X., Wang, W. 2015c. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 266, 74-81. https://doi.org/10.1016/j.cej.2014.12.063 | es_ES |
dc.description.references | Ebrahimi, A., Muttucumaru, S., McLauchlan, C., Ansari, A., Vishwanathan, A.S. 2021. A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. Journal of Environmental Chemical Engineering, 9. 105011. https://doi.org/10.1016/j.jece.2020.105011 | es_ES |
dc.description.references | Forbes, M.G., Dickson, K.R., Golden, T.D., Hudak, P., Doyle, R.D. 2004. Dissolved Phosphorus Retention of LightWeight Expanded Shale and Masonry Sand Used in Subsurface Flow Treatment Wetlands. Environmental Science & Technology, 38, 892-898. https://doi.org/10.1021/es034341z | es_ES |
dc.description.references | Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W., Tesfahunegn, A.A. 2020. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, 122350. https://doi.org/10.1016/j.biortech.2019.122350 | es_ES |
dc.description.references | Ge, Z., Li, J., Xiao, L., Tong, Y., He, Z. 2014. Recovery of electrical energy in microbial fuel cell: brief review. Environmental Science and Technology Letter, 1, 137-141. https://doi.org/10.1021/ez4000324 | es_ES |
dc.description.references | Gil, H.A., Cisneros, J.M., de Prada, J.D., Plevich, J.O., Sánchez Delgado, A.R. 2013. Tecnologías verdes para el aprovechamiento de aguas residuales urbanas: análisis económico. Revista Ambiente & Água - An Interdisciplinary Journal of Applied Science, 8(3), 118-128. | es_ES |
dc.description.references | González, T., Puigagut, J., Vidal, G. 2021. Organic matter removal and nitrogen transformation by a constructed-wetlandmicrobial fuel cell system with simultaneous bioelectricity generation. Science of The Total Environment 753, 142075. https://doi.org/10.1016/j.scitotenv.2020.142075 | es_ES |
dc.description.references | Guadarrama-Pérez, O., Gutiérrez-Macías, T., García-Sánchez, L., Guadarrama-Pérez, V., Estrada-Arriaga, E. 2019. Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: A review. International Journal Energy Research, 43, 5106-5127. https://doi.org/10.1002/er.4496 | es_ES |
dc.description.references | Gupta, S., Srivastava, P., Patil, S.A., Yadav, A.K. 2021. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. Bioresource Technology, 320, 124376. https://doi.org/10.1016/j.biortech.2020.124376 | es_ES |
dc.description.references | Hoffmann, H., Platzer, C., Winker, M., von Muench, E. 2011. Revisión Técnica de Humedales Artificial de flujo subsuperficial para el tratamiento de aguas grises y aguas domésticas. Agencia de Cooperación Internacional de Alemania, Programa de Saneamiento Sostenible, Eschborn, Alemania. | es_ES |
dc.description.references | Kataki, S., Chatterjee, S., Vairale, M.G., Sharma, S., Dwivedi S.K., Gupta, D.K. 2021. Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable and Sustainable Energy Reviews, 148, 111261. https://doi.org/10.1016/j.rser.2021.111261 | es_ES |
dc.description.references | Ley Provincial 11220, de 24 de noviembre de 1994, sobre transformación del sector público de agua potable, desagües cloacales y saneamiento. Boletín oficial de la Provincia de Santa Fe, 12 de diciembre de 1994. https://www.argentina.gob.ar/normativa/provincial/ley-11220-123456789-0abc-defg-022-1100svorpyel/actualizacion | es_ES |
dc.description.references | Logan, B.E. 2008. Microbial fuel cells. Wiley & Sons, Inc., New Jersey, USA. https://doi.org/10.1002/9780470258590 | es_ES |
dc.description.references | Pinto, R.P., Srinivasan, B., Guiot, S.R., Tartakovsky, B. 2011. The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research, 45, 1571-1578. https://doi.org/10.1016/j.watres.2010.11.033 | es_ES |
dc.description.references | Rabaey, K., Rodriguez, J., Blackall, L., Keller, J., Gross, P., Batstone, D., Verstraete, W., Nealson, K.H. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 88, 3999-4004. https://doi.org/10.1038/ismej.2007.4 | es_ES |
dc.description.references | Revelo, D.M., Hurtado, N.H., Ruíz, J.O. 2013. Celdas de combustible microbianas (CCMS): Un reto para la remoción de materia orgánica y la generación de energía eléctrica. Información Tecnológica, 24(6), 17-26. https://doi.org/10.4067/S0718-07642013000600004 | es_ES |
dc.description.references | Srivastava, P., Abbassi, R., Yadav, A.K, Garaniya, V., Asadnia, M. 2020. A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. Chemosphere, 254, 126926. https://doi.org/10.1016/j.chemosphere.2020.126926 | es_ES |
dc.description.references | Stefanakis, I.A., Akratos, C.S. 2016. Removal of Pathogenic Bacteria in Constructed Wetlands: Mechanisms and Efficiency. In: Phytoremediation (A. Ansari, S. Gill, R. Gill, G. Lanza, L. Newman, Eds.). Springer International Publishing, Switzerland, 327-346. https://doi.org/10.1007/978-3-319-41811-7_17 | es_ES |
dc.description.references | Tilley, E., Lüthi, C., Morel, A., Zurbrügg, C., Schertenleib, R. 2011. Compendio de Sistemas y Tecnologías de Saneamiento. Eawag, Dübendorf, Suiza. | es_ES |
dc.description.references | UNEP, WHO, UNESCO, WMO. 1987. GEMS/WATER operational guide. World Health Organization, Ginebra, Suiza. | es_ES |
dc.description.references | Vidal, G., Hormazábal, S. 2018. Humedales construidos. Diseño y operación. Universidad de Concepción, Concepción, Chile. | es_ES |
dc.description.references | Villaseñor, J., Capilla, P., Rodrigo, M.A., Cañizares, P., Fernández, F.J. 2013. Operation of a horizontal subsurface flow constructed wetland e microbial fuel cell treating wastewater under different organic loading rates. Water Research, 47, 6731-6738. https://doi.org/10.1016/j.watres.2013.09.005 | es_ES |
dc.description.references | Vohla, C., Kõiv, M., Bavor, H.J., Chazarenc, F., Mander, Ü. 2011. Filter materials for phosphorus removal from wastewater in treatment wetlands. A review. Ecological Engineering, 37(1), 70-89. https://doi.org/10.1016/j.ecoleng.2009.08.003 | es_ES |
dc.description.references | Vymazal, J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380 (1-3), 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014 | es_ES |
dc.description.references | Vymazal, J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science & Technology, 45, 61-69. https://doi.org/10.1021/es101403q | es_ES |
dc.description.references | Wang, W., Zhang, Y., Li, M., Wei, X., Wang, Y., Liu, L., Wang, H., Shen, S. 2020. Operation mechanism of constructed wetlandmicrobial fuel cells for wastewater treatment and electricity generation: A review. Bioresource Technology, 314, 123808. https://doi.org/10.1016/j.biortech.2020.123808 | es_ES |
dc.description.references | Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., Hu, Y.S. 2013. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal, 229, 364-370. https://doi.org/10.1016/j.cej.2013.06.023 | es_ES |