- -

Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana

Mostrar el registro completo del ítem

Modini, L.; Pizarro, A.; Zerbatto, M. (2023). Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana. Ingeniería del Agua. 27(4):283-293. https://doi.org/10.4995/ia.2023.20318

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199284

Ficheros en el ítem

Metadatos del ítem

Título: Tratamiento sustentable de agua residual urbana mediante un humedal construido acoplado con una celda de combustible microbiana
Otro titulo: Sustainable treatment of urban wastewater using a constructed wetland coupled with a microbial fuel cell
Autor: Modini, Laura Pizarro, Ana Zerbatto, Mariel
Fecha difusión:
Resumen:
[EN] The efficiency of a constructed wetland coupled with a microbial fuel cell (CW-MFC), at a micropilot scale, was evaluated to treat real urban wastewater (UWW) and generate electricity by action of electroactive bacteria ...[+]


[ES] Se evaluó la eficiencia de un humedal construido acoplado con una celda de combustible microbiana (HC-CCM), a escala micropiloto, para tratar agua residual urbana real (ARU) y generar electricidad por acción de bacterias ...[+]
Palabras clave: Constructed wetland , Microbial fuel cell , Real sewage , Treatment efficiency , Bioelectricity , Humedal construido , Celda de combustible microbiana , Agua residual real , Eficiencia de tratamiento , Bioelectricidad
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.20318
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.20318
Agradecimientos:
Los autores agradecen a la Universidad Nacional del Litoral por financiar esta investigación mediante el Programa Curso de Acción para la Investigación y Desarrollo (CAI+D), convocatoria 2020, Resolución C.S. N° 400/19.
Tipo: Artículo

References

APHA, AWWA, WEF. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, USA.

APHA, AWWA, WPCF. 1992. Métodos Normalizados para el Análisis de aguas potables y residuales. Ediciones Díaz de Santos, Madrid, España.

BID, CEPAL. 2018. Proceso regional de las américas. Foro mundial del agua 2018. Informe Regional América Latina y el Caribe: Resumen ejecutivo 2018. Banco Interamericano de Desarrollo, Comisión Económica para América Latina y el Caribe, USA. [+]
APHA, AWWA, WEF. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, USA.

APHA, AWWA, WPCF. 1992. Métodos Normalizados para el Análisis de aguas potables y residuales. Ediciones Díaz de Santos, Madrid, España.

BID, CEPAL. 2018. Proceso regional de las américas. Foro mundial del agua 2018. Informe Regional América Latina y el Caribe: Resumen ejecutivo 2018. Banco Interamericano de Desarrollo, Comisión Económica para América Latina y el Caribe, USA.

Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., Vidal, G. 2017. Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecological Engineering, 99, 246-255. https://doi.org/10.1016/j.ecoleng.2016.11.058

Directiva 91/271/CEE, de 21 de mayo de 1991, sobre el tratamiento de las aguas residuales urbanas. DOCE, 135, de 30 de mayo de 1991. https://www.boe.es/buscar/doc.php?id=DOUE-L-1991-80646

Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., Liu, R. 2015a. A review of a recently emerged technology: Constructed wetland - Microbial fuel cells. Water Research, 85, 38-45. https://doi.org/10.1016/j.watres.2015.08.016

Doherty, L., Zhao, Y., Zhao, X., Wang, W. 2015b. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecological Engineering, 79, 8-14. https://doi.org/10.1016/j.ecoleng.2015.03.004

Doherty, L., Zhao, Y., Zhao, X., Wang, W. 2015c. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 266, 74-81. https://doi.org/10.1016/j.cej.2014.12.063

Ebrahimi, A., Muttucumaru, S., McLauchlan, C., Ansari, A., Vishwanathan, A.S. 2021. A critical review of the symbiotic relationship between constructed wetland and microbial fuel cell for enhancing pollutant removal and energy generation. Journal of Environmental Chemical Engineering, 9. 105011. https://doi.org/10.1016/j.jece.2020.105011

Forbes, M.G., Dickson, K.R., Golden, T.D., Hudak, P., Doyle, R.D. 2004. Dissolved Phosphorus Retention of LightWeight Expanded Shale and Masonry Sand Used in Subsurface Flow Treatment Wetlands. Environmental Science & Technology, 38, 892-898. https://doi.org/10.1021/es034341z

Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W., Tesfahunegn, A.A. 2020. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, 122350. https://doi.org/10.1016/j.biortech.2019.122350

Ge, Z., Li, J., Xiao, L., Tong, Y., He, Z. 2014. Recovery of electrical energy in microbial fuel cell: brief review. Environmental Science and Technology Letter, 1, 137-141. https://doi.org/10.1021/ez4000324

Gil, H.A., Cisneros, J.M., de Prada, J.D., Plevich, J.O., Sánchez Delgado, A.R. 2013. Tecnologías verdes para el aprovechamiento de aguas residuales urbanas: análisis económico. Revista Ambiente & Água - An Interdisciplinary Journal of Applied Science, 8(3), 118-128.

González, T., Puigagut, J., Vidal, G. 2021. Organic matter removal and nitrogen transformation by a constructed-wetlandmicrobial fuel cell system with simultaneous bioelectricity generation. Science of The Total Environment 753, 142075. https://doi.org/10.1016/j.scitotenv.2020.142075

Guadarrama-Pérez, O., Gutiérrez-Macías, T., García-Sánchez, L., Guadarrama-Pérez, V., Estrada-Arriaga, E. 2019. Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: A review. International Journal Energy Research, 43, 5106-5127. https://doi.org/10.1002/er.4496

Gupta, S., Srivastava, P., Patil, S.A., Yadav, A.K. 2021. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. Bioresource Technology, 320, 124376. https://doi.org/10.1016/j.biortech.2020.124376

Hoffmann, H., Platzer, C., Winker, M., von Muench, E. 2011. Revisión Técnica de Humedales Artificial de flujo subsuperficial para el tratamiento de aguas grises y aguas domésticas. Agencia de Cooperación Internacional de Alemania, Programa de Saneamiento Sostenible, Eschborn, Alemania.

Kataki, S., Chatterjee, S., Vairale, M.G., Sharma, S., Dwivedi S.K., Gupta, D.K. 2021. Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable and Sustainable Energy Reviews, 148, 111261. https://doi.org/10.1016/j.rser.2021.111261

Ley Provincial 11220, de 24 de noviembre de 1994, sobre transformación del sector público de agua potable, desagües cloacales y saneamiento. Boletín oficial de la Provincia de Santa Fe, 12 de diciembre de 1994. https://www.argentina.gob.ar/normativa/provincial/ley-11220-123456789-0abc-defg-022-1100svorpyel/actualizacion

Logan, B.E. 2008. Microbial fuel cells. Wiley & Sons, Inc., New Jersey, USA. https://doi.org/10.1002/9780470258590

Pinto, R.P., Srinivasan, B., Guiot, S.R., Tartakovsky, B. 2011. The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research, 45, 1571-1578. https://doi.org/10.1016/j.watres.2010.11.033

Rabaey, K., Rodriguez, J., Blackall, L., Keller, J., Gross, P., Batstone, D., Verstraete, W., Nealson, K.H. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 88, 3999-4004. https://doi.org/10.1038/ismej.2007.4

Revelo, D.M., Hurtado, N.H., Ruíz, J.O. 2013. Celdas de combustible microbianas (CCMS): Un reto para la remoción de materia orgánica y la generación de energía eléctrica. Información Tecnológica, 24(6), 17-26. https://doi.org/10.4067/S0718-07642013000600004

Srivastava, P., Abbassi, R., Yadav, A.K, Garaniya, V., Asadnia, M. 2020. A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. Chemosphere, 254, 126926. https://doi.org/10.1016/j.chemosphere.2020.126926

Stefanakis, I.A., Akratos, C.S. 2016. Removal of Pathogenic Bacteria in Constructed Wetlands: Mechanisms and Efficiency. In: Phytoremediation (A. Ansari, S. Gill, R. Gill, G. Lanza, L. Newman, Eds.). Springer International Publishing, Switzerland, 327-346. https://doi.org/10.1007/978-3-319-41811-7_17

Tilley, E., Lüthi, C., Morel, A., Zurbrügg, C., Schertenleib, R. 2011. Compendio de Sistemas y Tecnologías de Saneamiento. Eawag, Dübendorf, Suiza.

UNEP, WHO, UNESCO, WMO. 1987‎. GEMS/WATER operational guide. World Health Organization, Ginebra, Suiza.

Vidal, G., Hormazábal, S. 2018. Humedales construidos. Diseño y operación. Universidad de Concepción, Concepción, Chile.

Villaseñor, J., Capilla, P., Rodrigo, M.A., Cañizares, P., Fernández, F.J. 2013. Operation of a horizontal subsurface flow constructed wetland e microbial fuel cell treating wastewater under different organic loading rates. Water Research, 47, 6731-6738. https://doi.org/10.1016/j.watres.2013.09.005

Vohla, C., Kõiv, M., Bavor, H.J., Chazarenc, F., Mander, Ü. 2011. Filter materials for phosphorus removal from wastewater in treatment wetlands. A review. Ecological Engineering, 37(1), 70-89. https://doi.org/10.1016/j.ecoleng.2009.08.003

Vymazal, J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380 (1-3), 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014

Vymazal, J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science & Technology, 45, 61-69. https://doi.org/10.1021/es101403q

Wang, W., Zhang, Y., Li, M., Wei, X., Wang, Y., Liu, L., Wang, H., Shen, S. 2020. Operation mechanism of constructed wetlandmicrobial fuel cells for wastewater treatment and electricity generation: A review. Bioresource Technology, 314, 123808. https://doi.org/10.1016/j.biortech.2020.123808

Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., Hu, Y.S. 2013. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal, 229, 364-370. https://doi.org/10.1016/j.cej.2013.06.023

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem