Mostrar el registro sencillo del ítem
dc.contributor.author | Andrés, R. R. | es_ES |
dc.contributor.author | Riera, E. | es_ES |
dc.contributor.author | Gallego-Juárez, J.A | es_ES |
dc.contributor.author | Mulet, A. | es_ES |
dc.contributor.author | Garcia-Perez, J.V. | es_ES |
dc.contributor.author | Carcel, Juan A. | es_ES |
dc.date.accessioned | 2023-11-06T19:02:37Z | |
dc.date.available | 2023-11-06T19:02:37Z | |
dc.date.issued | 2021-03-17 | es_ES |
dc.identifier.issn | 0737-3937 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199378 | |
dc.description.abstract | [EN] The recent development of a novel family of power ultrasonic transducers with extensiveradiating surfaces represents a step forward in the implementation of new airborne powerultrasonic (APU) technologies for drying process intensification at low temperature. Thesesystems have been successfully used to assist drying of different products at laboratorylevel. This work deals with the development, integration, and testing of a new APU trans-ducer with a stepped-grooved circular radiator as an initial step in scaling up the processand the results achieved in experiments of airborne atmospheric freeze-drying (AFD) ofapples. The results confirm that ultrasound application leads to a significant intensificationof the processes. The modeling shows that the increase of kinetic parameters was lowerthan those obtained with cylindrical transducers having the same electrical input. This factis attributed to the treatment of greater volume. | es_ES |
dc.description.sponsorship | This work has been supported by the project DPI2012-37466-C03-01 funded by the Spanish Ministry of Economy and Competiveness and by the project RTA2015-00060-C04-02 funded by INIA-ERDF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Drying Technology | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Power ultrasound | es_ES |
dc.subject | Ultrasonic processing | es_ES |
dc.subject | Mass transport | es_ES |
dc.subject | Atmospheric freeze-drying | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/07373937.2019.1677704 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/INSTITUTO NACIONAL DE INV. Y TECNOL. AGRARIA Y ALIMENTARIA //RTA2015-00060-C04-02//REVALORIZACION INTEGRAL DE SUBPRODUCTOS EN FUNCION DE SUS USOS POTENCIALES: METODOLOGIAS Y ESTRATEGIAS DE ESTABILIZACION PARA LA OPTIMIZACION DEL APROVECHAMIENTO INTEGRAL DE SUBPRODUCTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2012-37466-C03-01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Andrés, RR.; Riera, E.; Gallego-Juárez, J.; Mulet, A.; Garcia-Perez, J.; Carcel, JA. (2021). Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer. Drying Technology. 39(2):245-258. https://doi.org/10.1080/07373937.2019.1677704 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/07373937.2019.1677704 | es_ES |
dc.description.upvformatpinicio | 245 | es_ES |
dc.description.upvformatpfin | 258 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 39 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\431098 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | INSTITUTO NACIONAL DE INV. Y TECNOL. AGRARIA Y ALIMENTARIA | es_ES |