- -

El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa

Mostrar el registro completo del ítem

Sanz-Ramos, M.; Bladé, E.; Sánchez-Juny, M. (2023). El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa. Ingeniería del Agua. 27(4):295-310. https://doi.org/10.4995/ia.2023.20080

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199423

Ficheros en el ítem

Metadatos del ítem

Título: El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa
Otro titulo: The role of friction y cohesion terms in two-dimensional modelling of non-Newtonian fluids: dense snow avalanches
Autor: Sanz-Ramos, Marcos Bladé, Ernest Sánchez-Juny, Martí
Fecha difusión:
Resumen:
[EN] The numerical modeling of non-Newtonian fluids (such as mining tailings, snow avalanches, etc.) requires the consideration of specific rheological models to calculate shear stress. The Voellmy friction model is one ...[+]


[ES] La modelización numérica de fluidos no Newtonianos (relaves mineros, avalanchas de nieve, etc.) requiere la consideración de modelos reológicos específicos para calcular el esfuerzo cortante. El modelo de fricción de ...[+]
Palabras clave: Non-Newtonian fluids , Two-dimensional numerical modelling , Rheological models , Snow avalanches , Fluidos no Newtonianos , Modelización numérica bidimensional , Modelos reológicos , Avalanchas de nieve
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.20080
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.20080
Tipo: Artículo

References

Arcement, G.J., Schneider, V.R. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains, Paper 2339. ed, USGS Water-Supply. 19. Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box, 25425, Denver, CO 80225. https://doi.org/10.3133/wsp2339

Barnes, H.H. 1969. Roughness characteristics of natural channels. J. Hydrol., 7, 354. https://doi.org/10.1016/0022-1694(69)90113-9

Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF, Davos, Swiss. [+]
Arcement, G.J., Schneider, V.R. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains, Paper 2339. ed, USGS Water-Supply. 19. Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box, 25425, Denver, CO 80225. https://doi.org/10.3133/wsp2339

Barnes, H.H. 1969. Roughness characteristics of natural channels. J. Hydrol., 7, 354. https://doi.org/10.1016/0022-1694(69)90113-9

Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF, Davos, Swiss.

Bartelt, P., Feistl, T., Bhler, Y., Buser, O. 2012. Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full-depth gliding snow avalanches. Geophys. Res. Lett., 39, 1–6. https://doi.org/10.1029/2012GL052479

Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242–254. https://doi.org/10.3189/s002214300000174x

Bartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837–850. https://doi.org/10.3189/2015JoG14J126

Bermúdez, A., Dervieux, A., Desideri, J.-A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49–72. https://doi.org/10.1016/S0045-7825(97)85625-3

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing. 30, 1–10. https://doi.org/10.1016/j.rimni.2012.07.004

Bladé, E., Gómez-Valentín, M., Sánchez-Juny, M., Dolz, J. 2008. Preserving steady-state in one-dimensional finite-volume computations of river flow. J. Hydraul. Eng., 134, 1343–1347. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1343)

Bladé, E., Sanz-Ramos, M., Dolz, J., Expósito-Pérez, J., Sánchez-Juny, M. 2019. Modelling flood propagation in the service galleries of a nuclear power plant. Nucl. Eng. Des., 352, 110180. https://doi.org/10.1016/j.nucengdes.2019.110180

Bladé, E., Valentín, M.G., Sánchez-Juny, M., Dolz, J. 2012. Source term treatment of SWEs using the surface gradient upwind method. J. Hydraul. Res., 50, 447–448. https://doi.org/10.1080/00221686.2012.707887

Bouchet, A., Naaim, M., Bellot, H., Ousset, F. 2004. Experimental study of dense snow avalanches: Velocity profiles in steady and fully developed flows. Ann. Glaciol., 38, 30–35. https://doi.org/10.3189/172756404781815130

Bouchet, A., Naaim, M., Ousset, F., Bellot, H., Cauvard, D. 2003. Experimental determination of constitutive equations for dense and dry avalanches: Presentation of the set-up and first results. Surv. Geophys., 24, 525–541. https://doi.org/10.1023/B:GEOP.0000006080.91951.cd

Brugnot, G. 2000. SAME Avalanche mapping, model validation and warning systems. Office for European Commision. Official Publications of the European Communities, Luxemburg.

CCA, 2016. Technical Aspects of Snow Avalanche Risk Management─Resources and Guidelines for Avalanche Practitioners in Canada. Revelstoke, BC, Canada: Canadian Avalanche Association.

Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res., 51, 5464–5486. https://doi.org/10.1002/2014WR016547

Cea, L., Puertas, J., Vázquez-Cendón, M.-E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303–341. https://doi.org/10.1007/s11831-007-9009-3

Chevrel, M.O., Labroquère, J., Harris, A.J.L., Rowland, S.K. 2018. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties. Comput. Geosci., 111, 167–180. https://doi.org/10.1016/j.cageo.2017.11.009

Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D — numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report.

Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005

Dent, J.D., Lang, T.E. 1982. Experiments on mechanics of flowing snow. Cold Reg. Sci. Technol., 5, 253–258. https://doi.org/10.1016/0165-232X(82)90018-0

Dreier, L., Bühler, Y., Steinkogler, W., Feistl, T., Christen, M., Bartelt, P. 2014. Modelling Small and Frequent Avalanches, in: International Snow Science Workshop 2014 Proceedings. 29 Sep - 3 Oct, Banff, Canada, p. 8.

Ebrahmimi, N.G., Fathi-Moghadam, M., Kashefipour, S.M., Saneie, M., Ebrahimi, K. 2008. Effects of flow and vegetation states on river roughness coefficients. J. Appl. Sci., 8, 2118–2123. https://doi.org/10.3923/jas.2008.2118.2123

EEA, 2000. CORINE Land Cover technical guide - Addendum 2000. European Enviromental Agency Technical report No 40. Copenhague, Denmark.

Eglit, M., Yakubenko, A., Zayko, J. 2020. A Review of Russian Snow Avalanche Models—From Analytical Solutions to Novel 3D Models. Geosciences, 10, 77. https://doi.org/10.3390/geosciences10020077

Faccanoni, G., Mangeney, A. 2013. Exact solution for granular flows. Int. J. Numer. Anal. Methods Geomech., 37, 1408–1433. https://doi.org/10.1002/nag.2124

Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol., 61, 875–888. https://doi.org/10.3189/2015JoG14J168

Fischer, J.T., Kowalski, J., Pudasaini, S.P., Miller, S.A. 2009. Dynamic avalanche modeling in natural terrain. ISSW 09 - Int. Snow Sci. Work. Proc. 448–453.

Gauer, P. 2014. Comparison of avalanche front velocity measurements and implications for avalanche models. Cold Reg. Sci. Technol., 97, 132–150. https://doi.org/10.1016/j.coldregions.2013.09.010

Gauer, P., Issler, D., Lied, K., Kristensen, K., Sandersen, F. 2008. On snow avalanche flow regimes: Inferences from observations and measurements, in: ISSW - International Snow Science Workshop 2008 Proceedings, Whistler, Canada, 21–27 September, pp. 717–723.

Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217–228. https://doi.org/10.5194/tc-11-217-2017

Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J., Gast, T.F., Angeles, L., Herwijnen, A. Van, Jiang, C. 2018. Unified modeling of the release and flow of snow avalanches using the Material Point Method, in: ISSW - International Snow Science Workshop Proceedings 2018. Innsbruck, Austria.

Gaume, J., van Herwijnen, A., Gast, T., Teran, J., Jiang, C. 2019. Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method. Cold Reg. Sci. Technol., 168, 102847. https://doi.org/10.1016/j.coldregions.2019.102847

Green, J.C. 2005. Modelling flow resistance in vegetated streams: Review and development of new theory. Hydrol. Process., 19, 1245–1259. https://doi.org/10.1002/hyp.5564

Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472–1481. https://doi.org/10.1016/j.envsoft.2007.01.001

Gubler, H. 1987. Measurements and modelling of snow avalanche speeds. Avalanche formation, movement and effects, in: Proceedings of the Davos Symposium. September 1986, vol. 162. IAHS Publ., pp. 405–420.

Heredia, M.B., Eckert, N., Prieur, C., Thibert, E. 2020. Bayesian calibration of an avalanche model from autocorrelated measurements along the flow: Application to velocities extracted from photogrammetric images. J. Glaciol., 66(257), 373–385. https://doi.org/10.1017/jog.2020.11

Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610–623. https://doi.org/10.1139/t95-063

Hussin, H.Y., Quan-Luna, B., Van Westen, C.J., Christen, M., Malet, J.P., Van Asch, T.W.J. 2012. Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Nat. Hazards Earth Syst. Sci., 12, 3075–3090. https://doi.org/10.5194/nhess-12-3075-2012

Hutter, K., Koch, T., Plüess, C., Savage, S.B. 1995. The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mech., 109, 127–165. https://doi.org/10.1007/BF01176820

Issler, D., Gauer, P. 2008. Exploring the significance of the fluidized flow regime for avalanche hazard mapping. Ann. Glaciol., 49, 193–198. https://doi.org/10.3189/172756408787814997

Issler, D., Jenkins, J.T., McElwaine, J.N. 2018. Comments on avalanche flow models based on the concept of random kinetic energy. J. Glaciol., 64, 148–164. https://doi.org/10.1017/jog.2017.62

Jaedicke, C., Kern, M.A., Gauer, P., Baillifard, M.A., Platzer, K. 2008. Chute experiments on slushflow dynamics. Cold Reg. Sci. Technol., 51, 156–167. https://doi.org/10.1016/j.coldregions.2007.03.011

Jamieson, B., Margreth, S., Jones, A. 2008. Application and Limitations of Dynamic Models for Snow Avalanche Hazard Mapping, in: Proceedings of the International Snow Science Workshop, Whistler, BC. pp. 730–739.

Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November–1 December 1999. pp. 1–15.

Kelfoun, K. 2011. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J. Geophys. Res. Solid Earth, 116, 1–14. https://doi.org/10.1029/2010JB007622

Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227–238. https://doi.org/10.1139/t00-100

Lang, T.E., Dent, J.D. 1983. Basal surface-layer properties in flowing snow. Ann. Glaciol., 4, 158–162. https://doi.org/10.3189/S0260305500005401

Lang, T.E., Dent, J.D. 1980. Scale modeling of snow-avalanche impact on structures. J. Glaciol., 26, 189–196. https://doi.org/10.1017/S0022143000010728

LeVeque, R.L. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts Appl. Math. 31. https://doi.org/10.1017/CBO9780511791253

Maggioni, M., Barbero, M., Barpi, F., Borri-Brunetto, M., De Biagi, V., Freppaz, M., Frigo, B., Pallara, O., Chiaia, B. 2019. Snow Avalanche Impact Measurements at the Seehore Test Site in Aosta Valley (NW Italian Alps). Geosciences, 9, 471. https://doi.org/10.3390/geosciences9110471

Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: ISSW - International Snow Science Workshop 2013, Grenoble Chamonix-Mont-Blanc, France, pp. 591–598.

Maggioni, M., Gruber, U. 2003. The influence of topographic parameters on avalanche release dimension and frequency. Cold Reg. Sci. Technol., 37, 407–419. https://doi.org/10.1016/S0165-232X(03)00080-6

MAGRAMA, 2011. Methodological Guide for the Development of the National Flood Zone Mapping System [in Spanish]. Ministerio de Medio Ambiente y Medio Rural y Marino. Gobierno de España: Madrid, España.

Margreth, S. 2016. Ausscheiden von Schneegleiten und Schneedruck in Gefahrenkarten. WSL Berichte, 47. Birmensdorf, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL.

Margreth, S., Funk, M. 1999. Hazard mapping for ice and combined snow/ice avalanches — two case studies from the Swiss and Italian Alps. Cold Reg. Sci. Technol., 30, 159–173. https://doi.org/10.1016/S0165-232X(99)00027-0

McClung, D.M., Stethem, C.J., Schaerer, P.A., Jamieson, J.B. 2002. Guidelines for Snow Avalanche Risk Determination and Mapping in Canada. Canadian Avalanche Association, Revelstoke, BC.

Medina, V., Hürlimann, M., Bateman, A. 2008. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5, 127–142. https://doi.org/10.1007/s10346-007-0102-3

Naaim, M., Durand, Y., Eckert, N., Chambon, G. 2013. Dense avalanche friction coefficients: influence of physical properties of snow. J. Glaciol., 59, 771–782. https://doi.org/10.3189/2013JoG12J205

O’Hare, M.T., McGahey, C., Bissett, N., Cailes, C., Henville, P., Scarlett, P. 2010. Variability in roughness measurements for vegetated rivers near base flow, in England and Scotland. J. Hydrol., 385, 361–370. https://doi.org/10.1016/j.jhydrol.2010.02.036

Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190–198. https://doi.org/10.1016/j.coldregions.2010.08.011

Pirulli, M., Sorbino, G. 2008. Assessing potential debris flow runout: A comparison of two simulation models. Nat. Hazards Earth Syst. Sci., 8, 961–971. https://doi.org/10.5194/nhess-8-961-2008

Platzer, K., Bartelt, P., Jaedicke, C. 2007a. Basal shear and normal stresses of dry and wet snow avalanches after a slope deviation. Cold Reg. Sci. Technol., 49, 11–25. https://doi.org/10.1016/j.coldregions.2007.04.003

Platzer, K., Bartelt, P., Kern, M. 2007b. Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophys. Res. Lett., 34, 1–5. https://doi.org/10.1029/2006GL028670

Podolskiy, E.A., Chambon, G., Naaim, M., Gaume, J. 2013. A review of finite-element modelling in snow mechanics. J. Glaciol., 59, 1189–1201. https://doi.org/10.3189/2013jog13j121

Ramos-Fuertes, A., Marti-Cardona, B., Bladé, E., Dolz, J. 2013. Envisat/ASAR Images for the Calibration of Wind Drag Action in the Doñana Wetlands 2D Hydrodynamic Model. Remote Sens., 6, 379–406. https://doi.org/10.3390/rs6010379

Rastello, M., Bouchet, A. 2007. Surface oscillations in channeled snow flows. Cold Reg. Sci. Technol., 49, 134–144. https://doi.org/10.1016/j.coldregions.2007.03.003

Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations. Numer. Methods Fluid Dyn., 2, 55–80.

Rognon, P.G., Chevoir, F., Bellot, H., Ousset, F., Naaïm, M., Coussot, P. 2008. Rheology of dense snow flows: Inferences from steady state chute-flow experiments. J. Rheol., 52, 729–748. https://doi.org/10.1122/1.2897609

Rudolf-miklau, F., Sauermoser, S., Mears, A.I. 2015. The Technical Avalanche Protecion Handbook. Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG. Berlin, Germany. https://doi.org/10.1002/9783433603840

Rudolf-Miklau, F., Sauermoser, S., Mears, A.I. 2014. The Technical Avalanche Protection Handbook. Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin, Germany. https://doi.org/10.1002/9783433603840

Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694–1709. https://doi.org/10.1002/esp.4603

Salm, B., Burkard, A., Guhler, H. 1990. Berechnung von Fliesslawinen: eine Anleitung fur Praktiker mit Beispielen. Eidgenössische Institut für Schnee- und Lawinenforschung.

Sanz-Ramos, M., Amengual, A., Bladé, E., Romero, R., Roux, H. 2018a. Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and highresolution meteorological model. E3S Web Conf. 40, 8. https://doi.org/10.1051/e3sconf/20184006028

Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018b. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109–124. https://doi.org/10.4995/ia.2018.8880

Sanz-Ramos, M., Téllez-Álvarez, J., Bladé, E., Gómez-Valentín, M. 2019. Simulating the hydrodynamics of sewer-grates using a 2D-hydraulic model, in: 5th International Conference SimHydro, 20-22 November, Nice (France), p. 8. https://doi.org/10.1007/978-981-15-5436-0_64

Sanz-Ramos, M., Martí-Cardona, B., Bladé, E., Seco, I., Amengual, A., Roux, H., Romero, R. 2020. NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. J. Hydrol. Eng., 25, 05020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979

Sanz-Ramos, M., Andrade, C.A., Oller, P., Furdada, G., Bladé, E., Martínez-Gomariz, E. 2021a. Reconstructing the Snow Avalanche of Coll de Pal 2018 (SE Pyrenees). GeoHazards, 2, 196–211. https://doi.org/10.3390/geohazards2030011

Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., Aragón-Hernández, J.L. 2021b. Interpreting the Manning Roughness Coefficient in Overland Flow Simulations with Coupled Hydrological-Hydraulic Distributed Models. Water, 13, 3433. https://doi.org/10.3390/w13233433

Sanz-Ramos, M., Olivares, G., Bladé, E. 2022. Experimental characterization and two-dimensional hydraulic-hydrologic modelling of the infiltration process through permeable pavements. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 38. https://doi.org/10.23967/j.rimni.2022.03.012

Sanz-Ramos, M., Bladé, E., Oller, P., Furdada, G. 2023. Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations. J. Glaciol., 1–17. https://doi.org/10.1017/jog.2023.48

Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177–215. https://doi.org/10.1017/S0022112089000340

Schaub, Y., Huggel, C., Cochachin, A. 2016. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru. Landslides, 13, 1445–1459. https://doi.org/10.1007/s10346-015-0658-2

Schraml, K., Thomschitz, B., McArdell, B.W., Graf, C., Kaitna, R. 2015. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat. Hazards Earth Syst. Sci., 15, 1483–1492. https://doi.org/10.5194/nhess-15-1483-2015

Schweizer, J. 1999. Review of dry snow slab avalanche release. Cold Reg. Sci. Technol., 30, 43–57. https://doi.org/10.1016/S0165-232X(99)00025-7

Stefania, S., Zugliani, D., Rosatti, G. 2020. Dense snow avalanche modelling with Voellmy rheology: TRENT2D vs RAMMS2D, in: Vistual Snow Science Workshop - VSSW 2020. 4 - 6 Oct. Fernie, Canada.

Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science.

Tiefenbacher, F., Kern, M.A. 2004. Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg. Sci. Technol., 38, 17–30. https://doi.org/10.1016/S0165-232X(03)00060-0

Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/b79761

Vázquez-Cendón, M.E. 1999. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys., 148, 497–526. https://doi.org/10.1006/jcph.1998.6127

Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73, 15. https://doi.org/10.5169/seals-61891

Zugliani, D., Rosatti, G. 2021. TRENT2D❄: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems. Cold Reg. Sci. Technol. 190, 103343. https://doi.org/10.1016/j.coldregions.2021.103343

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem