Mostrar el registro sencillo del ítem
dc.contributor.author | Sanz-Ramos, Marcos | es_ES |
dc.contributor.author | Bladé, Ernest | es_ES |
dc.contributor.author | Sánchez-Juny, Martí | es_ES |
dc.date.accessioned | 2023-11-07T10:41:29Z | |
dc.date.available | 2023-11-07T10:41:29Z | |
dc.date.issued | 2023-10-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/199423 | |
dc.description.abstract | [EN] The numerical modeling of non-Newtonian fluids (such as mining tailings, snow avalanches, etc.) requires the consideration of specific rheological models to calculate shear stress. The Voellmy friction model is one of the most popular theories, especially in snow avalanche modeling. Recently, Bartelt proposed a cohesion model to account for this intrinsic physical property in some fluids. However, the physical interpretation of the range of values for the Voellmy-Bartelt friction-cohesion model has not been sufficiently investigated, and this work aims to fill this gap. The results show that the Voellmy model dominates avalanche dynamics, and the cohesion model allows for the representation of long tails, while the friction and cohesion parameters can vary over a wide range. Additionally, a definition for the turbulent friction coefficient is proposed based on CORINE land use maps and the Manning coefficient for flood mapping. | es_ES |
dc.description.abstract | [ES] La modelización numérica de fluidos no Newtonianos (relaves mineros, avalanchas de nieve, etc.) requiere la consideración de modelos reológicos específicos para calcular el esfuerzo cortante. El modelo de fricción de Voellmy es una de las teorías más populares, especialmente en el modelado de avalanchas de nieve. Recientemente, Bartelt propuso un modelo de cohesión para dar cuenta de esta propiedad física intrínseca de algunos fluidos. Sin embargo, la interpretación física del rango de valores del modelo de fricción-cohesión de Voellmy-Bartelt no ha sido suficientemente investigada, y este trabajo pretende llenar este vacío. Los resultados muestran que el modelo de Voellmy domina la dinámica de la avalancha y el modelo de cohesión permite la representación de colas largas, mientras que los parámetros de fricción y cohesión pueden variar dentro de un amplio rango. Adicionalmente, se propone la definición de un valor para el coeficiente de fricción turbulento basado en los mapas de usos del suelo del CORINE y el coeficiente de Manning para el mapeo de inundaciones. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Non-Newtonian fluids | es_ES |
dc.subject | Two-dimensional numerical modelling | es_ES |
dc.subject | Rheological models | es_ES |
dc.subject | Snow avalanches | es_ES |
dc.subject | Fluidos no Newtonianos | es_ES |
dc.subject | Modelización numérica bidimensional | es_ES |
dc.subject | Modelos reológicos | es_ES |
dc.subject | Avalanchas de nieve | es_ES |
dc.title | El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa | es_ES |
dc.title.alternative | The role of friction y cohesion terms in two-dimensional modelling of non-Newtonian fluids: dense snow avalanches | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.20080 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sanz-Ramos, M.; Bladé, E.; Sánchez-Juny, M. (2023). El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa. Ingeniería del Agua. 27(4):295-310. https://doi.org/10.4995/ia.2023.20080 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.20080 | es_ES |
dc.description.upvformatpinicio | 295 | es_ES |
dc.description.upvformatpfin | 310 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\20080 | es_ES |
dc.description.references | Arcement, G.J., Schneider, V.R. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains, Paper 2339. ed, USGS Water-Supply. 19. Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box, 25425, Denver, CO 80225. https://doi.org/10.3133/wsp2339 | es_ES |
dc.description.references | Barnes, H.H. 1969. Roughness characteristics of natural channels. J. Hydrol., 7, 354. https://doi.org/10.1016/0022-1694(69)90113-9 | es_ES |
dc.description.references | Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF, Davos, Swiss. | es_ES |
dc.description.references | Bartelt, P., Feistl, T., Bhler, Y., Buser, O. 2012. Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full-depth gliding snow avalanches. Geophys. Res. Lett., 39, 1–6. https://doi.org/10.1029/2012GL052479 | es_ES |
dc.description.references | Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242–254. https://doi.org/10.3189/s002214300000174x | es_ES |
dc.description.references | Bartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837–850. https://doi.org/10.3189/2015JoG14J126 | es_ES |
dc.description.references | Bermúdez, A., Dervieux, A., Desideri, J.-A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49–72. https://doi.org/10.1016/S0045-7825(97)85625-3 | es_ES |
dc.description.references | Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing. 30, 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 | es_ES |
dc.description.references | Bladé, E., Gómez-Valentín, M., Sánchez-Juny, M., Dolz, J. 2008. Preserving steady-state in one-dimensional finite-volume computations of river flow. J. Hydraul. Eng., 134, 1343–1347. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1343) | es_ES |
dc.description.references | Bladé, E., Sanz-Ramos, M., Dolz, J., Expósito-Pérez, J., Sánchez-Juny, M. 2019. Modelling flood propagation in the service galleries of a nuclear power plant. Nucl. Eng. Des., 352, 110180. https://doi.org/10.1016/j.nucengdes.2019.110180 | es_ES |
dc.description.references | Bladé, E., Valentín, M.G., Sánchez-Juny, M., Dolz, J. 2012. Source term treatment of SWEs using the surface gradient upwind method. J. Hydraul. Res., 50, 447–448. https://doi.org/10.1080/00221686.2012.707887 | es_ES |
dc.description.references | Bouchet, A., Naaim, M., Bellot, H., Ousset, F. 2004. Experimental study of dense snow avalanches: Velocity profiles in steady and fully developed flows. Ann. Glaciol., 38, 30–35. https://doi.org/10.3189/172756404781815130 | es_ES |
dc.description.references | Bouchet, A., Naaim, M., Ousset, F., Bellot, H., Cauvard, D. 2003. Experimental determination of constitutive equations for dense and dry avalanches: Presentation of the set-up and first results. Surv. Geophys., 24, 525–541. https://doi.org/10.1023/B:GEOP.0000006080.91951.cd | es_ES |
dc.description.references | Brugnot, G. 2000. SAME Avalanche mapping, model validation and warning systems. Office for European Commision. Official Publications of the European Communities, Luxemburg. | es_ES |
dc.description.references | CCA, 2016. Technical Aspects of Snow Avalanche Risk Management─Resources and Guidelines for Avalanche Practitioners in Canada. Revelstoke, BC, Canada: Canadian Avalanche Association. | es_ES |
dc.description.references | Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res., 51, 5464–5486. https://doi.org/10.1002/2014WR016547 | es_ES |
dc.description.references | Cea, L., Puertas, J., Vázquez-Cendón, M.-E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303–341. https://doi.org/10.1007/s11831-007-9009-3 | es_ES |
dc.description.references | Chevrel, M.O., Labroquère, J., Harris, A.J.L., Rowland, S.K. 2018. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties. Comput. Geosci., 111, 167–180. https://doi.org/10.1016/j.cageo.2017.11.009 | es_ES |
dc.description.references | Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D — numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report. | es_ES |
dc.description.references | Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005 | es_ES |
dc.description.references | Dent, J.D., Lang, T.E. 1982. Experiments on mechanics of flowing snow. Cold Reg. Sci. Technol., 5, 253–258. https://doi.org/10.1016/0165-232X(82)90018-0 | es_ES |
dc.description.references | Dreier, L., Bühler, Y., Steinkogler, W., Feistl, T., Christen, M., Bartelt, P. 2014. Modelling Small and Frequent Avalanches, in: International Snow Science Workshop 2014 Proceedings. 29 Sep - 3 Oct, Banff, Canada, p. 8. | es_ES |
dc.description.references | Ebrahmimi, N.G., Fathi-Moghadam, M., Kashefipour, S.M., Saneie, M., Ebrahimi, K. 2008. Effects of flow and vegetation states on river roughness coefficients. J. Appl. Sci., 8, 2118–2123. https://doi.org/10.3923/jas.2008.2118.2123 | es_ES |
dc.description.references | EEA, 2000. CORINE Land Cover technical guide - Addendum 2000. European Enviromental Agency Technical report No 40. Copenhague, Denmark. | es_ES |
dc.description.references | Eglit, M., Yakubenko, A., Zayko, J. 2020. A Review of Russian Snow Avalanche Models—From Analytical Solutions to Novel 3D Models. Geosciences, 10, 77. https://doi.org/10.3390/geosciences10020077 | es_ES |
dc.description.references | Faccanoni, G., Mangeney, A. 2013. Exact solution for granular flows. Int. J. Numer. Anal. Methods Geomech., 37, 1408–1433. https://doi.org/10.1002/nag.2124 | es_ES |
dc.description.references | Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol., 61, 875–888. https://doi.org/10.3189/2015JoG14J168 | es_ES |
dc.description.references | Fischer, J.T., Kowalski, J., Pudasaini, S.P., Miller, S.A. 2009. Dynamic avalanche modeling in natural terrain. ISSW 09 - Int. Snow Sci. Work. Proc. 448–453. | es_ES |
dc.description.references | Gauer, P. 2014. Comparison of avalanche front velocity measurements and implications for avalanche models. Cold Reg. Sci. Technol., 97, 132–150. https://doi.org/10.1016/j.coldregions.2013.09.010 | es_ES |
dc.description.references | Gauer, P., Issler, D., Lied, K., Kristensen, K., Sandersen, F. 2008. On snow avalanche flow regimes: Inferences from observations and measurements, in: ISSW - International Snow Science Workshop 2008 Proceedings, Whistler, Canada, 21–27 September, pp. 717–723. | es_ES |
dc.description.references | Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217–228. https://doi.org/10.5194/tc-11-217-2017 | es_ES |
dc.description.references | Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J., Gast, T.F., Angeles, L., Herwijnen, A. Van, Jiang, C. 2018. Unified modeling of the release and flow of snow avalanches using the Material Point Method, in: ISSW - International Snow Science Workshop Proceedings 2018. Innsbruck, Austria. | es_ES |
dc.description.references | Gaume, J., van Herwijnen, A., Gast, T., Teran, J., Jiang, C. 2019. Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method. Cold Reg. Sci. Technol., 168, 102847. https://doi.org/10.1016/j.coldregions.2019.102847 | es_ES |
dc.description.references | Green, J.C. 2005. Modelling flow resistance in vegetated streams: Review and development of new theory. Hydrol. Process., 19, 1245–1259. https://doi.org/10.1002/hyp.5564 | es_ES |
dc.description.references | Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472–1481. https://doi.org/10.1016/j.envsoft.2007.01.001 | es_ES |
dc.description.references | Gubler, H. 1987. Measurements and modelling of snow avalanche speeds. Avalanche formation, movement and effects, in: Proceedings of the Davos Symposium. September 1986, vol. 162. IAHS Publ., pp. 405–420. | es_ES |
dc.description.references | Heredia, M.B., Eckert, N., Prieur, C., Thibert, E. 2020. Bayesian calibration of an avalanche model from autocorrelated measurements along the flow: Application to velocities extracted from photogrammetric images. J. Glaciol., 66(257), 373–385. https://doi.org/10.1017/jog.2020.11 | es_ES |
dc.description.references | Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610–623. https://doi.org/10.1139/t95-063 | es_ES |
dc.description.references | Hussin, H.Y., Quan-Luna, B., Van Westen, C.J., Christen, M., Malet, J.P., Van Asch, T.W.J. 2012. Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Nat. Hazards Earth Syst. Sci., 12, 3075–3090. https://doi.org/10.5194/nhess-12-3075-2012 | es_ES |
dc.description.references | Hutter, K., Koch, T., Plüess, C., Savage, S.B. 1995. The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mech., 109, 127–165. https://doi.org/10.1007/BF01176820 | es_ES |
dc.description.references | Issler, D., Gauer, P. 2008. Exploring the significance of the fluidized flow regime for avalanche hazard mapping. Ann. Glaciol., 49, 193–198. https://doi.org/10.3189/172756408787814997 | es_ES |
dc.description.references | Issler, D., Jenkins, J.T., McElwaine, J.N. 2018. Comments on avalanche flow models based on the concept of random kinetic energy. J. Glaciol., 64, 148–164. https://doi.org/10.1017/jog.2017.62 | es_ES |
dc.description.references | Jaedicke, C., Kern, M.A., Gauer, P., Baillifard, M.A., Platzer, K. 2008. Chute experiments on slushflow dynamics. Cold Reg. Sci. Technol., 51, 156–167. https://doi.org/10.1016/j.coldregions.2007.03.011 | es_ES |
dc.description.references | Jamieson, B., Margreth, S., Jones, A. 2008. Application and Limitations of Dynamic Models for Snow Avalanche Hazard Mapping, in: Proceedings of the International Snow Science Workshop, Whistler, BC. pp. 730–739. | es_ES |
dc.description.references | Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November–1 December 1999. pp. 1–15. | es_ES |
dc.description.references | Kelfoun, K. 2011. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J. Geophys. Res. Solid Earth, 116, 1–14. https://doi.org/10.1029/2010JB007622 | es_ES |
dc.description.references | Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227–238. https://doi.org/10.1139/t00-100 | es_ES |
dc.description.references | Lang, T.E., Dent, J.D. 1983. Basal surface-layer properties in flowing snow. Ann. Glaciol., 4, 158–162. https://doi.org/10.3189/S0260305500005401 | es_ES |
dc.description.references | Lang, T.E., Dent, J.D. 1980. Scale modeling of snow-avalanche impact on structures. J. Glaciol., 26, 189–196. https://doi.org/10.1017/S0022143000010728 | es_ES |
dc.description.references | LeVeque, R.L. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts Appl. Math. 31. https://doi.org/10.1017/CBO9780511791253 | es_ES |
dc.description.references | Maggioni, M., Barbero, M., Barpi, F., Borri-Brunetto, M., De Biagi, V., Freppaz, M., Frigo, B., Pallara, O., Chiaia, B. 2019. Snow Avalanche Impact Measurements at the Seehore Test Site in Aosta Valley (NW Italian Alps). Geosciences, 9, 471. https://doi.org/10.3390/geosciences9110471 | es_ES |
dc.description.references | Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: ISSW - International Snow Science Workshop 2013, Grenoble Chamonix-Mont-Blanc, France, pp. 591–598. | es_ES |
dc.description.references | Maggioni, M., Gruber, U. 2003. The influence of topographic parameters on avalanche release dimension and frequency. Cold Reg. Sci. Technol., 37, 407–419. https://doi.org/10.1016/S0165-232X(03)00080-6 | es_ES |
dc.description.references | MAGRAMA, 2011. Methodological Guide for the Development of the National Flood Zone Mapping System [in Spanish]. Ministerio de Medio Ambiente y Medio Rural y Marino. Gobierno de España: Madrid, España. | es_ES |
dc.description.references | Margreth, S. 2016. Ausscheiden von Schneegleiten und Schneedruck in Gefahrenkarten. WSL Berichte, 47. Birmensdorf, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL. | es_ES |
dc.description.references | Margreth, S., Funk, M. 1999. Hazard mapping for ice and combined snow/ice avalanches — two case studies from the Swiss and Italian Alps. Cold Reg. Sci. Technol., 30, 159–173. https://doi.org/10.1016/S0165-232X(99)00027-0 | es_ES |
dc.description.references | McClung, D.M., Stethem, C.J., Schaerer, P.A., Jamieson, J.B. 2002. Guidelines for Snow Avalanche Risk Determination and Mapping in Canada. Canadian Avalanche Association, Revelstoke, BC. | es_ES |
dc.description.references | Medina, V., Hürlimann, M., Bateman, A. 2008. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5, 127–142. https://doi.org/10.1007/s10346-007-0102-3 | es_ES |
dc.description.references | Naaim, M., Durand, Y., Eckert, N., Chambon, G. 2013. Dense avalanche friction coefficients: influence of physical properties of snow. J. Glaciol., 59, 771–782. https://doi.org/10.3189/2013JoG12J205 | es_ES |
dc.description.references | O’Hare, M.T., McGahey, C., Bissett, N., Cailes, C., Henville, P., Scarlett, P. 2010. Variability in roughness measurements for vegetated rivers near base flow, in England and Scotland. J. Hydrol., 385, 361–370. https://doi.org/10.1016/j.jhydrol.2010.02.036 | es_ES |
dc.description.references | Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190–198. https://doi.org/10.1016/j.coldregions.2010.08.011 | es_ES |
dc.description.references | Pirulli, M., Sorbino, G. 2008. Assessing potential debris flow runout: A comparison of two simulation models. Nat. Hazards Earth Syst. Sci., 8, 961–971. https://doi.org/10.5194/nhess-8-961-2008 | es_ES |
dc.description.references | Platzer, K., Bartelt, P., Jaedicke, C. 2007a. Basal shear and normal stresses of dry and wet snow avalanches after a slope deviation. Cold Reg. Sci. Technol., 49, 11–25. https://doi.org/10.1016/j.coldregions.2007.04.003 | es_ES |
dc.description.references | Platzer, K., Bartelt, P., Kern, M. 2007b. Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophys. Res. Lett., 34, 1–5. https://doi.org/10.1029/2006GL028670 | es_ES |
dc.description.references | Podolskiy, E.A., Chambon, G., Naaim, M., Gaume, J. 2013. A review of finite-element modelling in snow mechanics. J. Glaciol., 59, 1189–1201. https://doi.org/10.3189/2013jog13j121 | es_ES |
dc.description.references | Ramos-Fuertes, A., Marti-Cardona, B., Bladé, E., Dolz, J. 2013. Envisat/ASAR Images for the Calibration of Wind Drag Action in the Doñana Wetlands 2D Hydrodynamic Model. Remote Sens., 6, 379–406. https://doi.org/10.3390/rs6010379 | es_ES |
dc.description.references | Rastello, M., Bouchet, A. 2007. Surface oscillations in channeled snow flows. Cold Reg. Sci. Technol., 49, 134–144. https://doi.org/10.1016/j.coldregions.2007.03.003 | es_ES |
dc.description.references | Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations. Numer. Methods Fluid Dyn., 2, 55–80. | es_ES |
dc.description.references | Rognon, P.G., Chevoir, F., Bellot, H., Ousset, F., Naaïm, M., Coussot, P. 2008. Rheology of dense snow flows: Inferences from steady state chute-flow experiments. J. Rheol., 52, 729–748. https://doi.org/10.1122/1.2897609 | es_ES |
dc.description.references | Rudolf-miklau, F., Sauermoser, S., Mears, A.I. 2015. The Technical Avalanche Protecion Handbook. Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG. Berlin, Germany. https://doi.org/10.1002/9783433603840 | es_ES |
dc.description.references | Rudolf-Miklau, F., Sauermoser, S., Mears, A.I. 2014. The Technical Avalanche Protection Handbook. Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin, Germany. https://doi.org/10.1002/9783433603840 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694–1709. https://doi.org/10.1002/esp.4603 | es_ES |
dc.description.references | Salm, B., Burkard, A., Guhler, H. 1990. Berechnung von Fliesslawinen: eine Anleitung fur Praktiker mit Beispielen. Eidgenössische Institut für Schnee- und Lawinenforschung. | es_ES |
dc.description.references | Sanz-Ramos, M., Amengual, A., Bladé, E., Romero, R., Roux, H. 2018a. Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and highresolution meteorological model. E3S Web Conf. 40, 8. https://doi.org/10.1051/e3sconf/20184006028 | es_ES |
dc.description.references | Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018b. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109–124. https://doi.org/10.4995/ia.2018.8880 | es_ES |
dc.description.references | Sanz-Ramos, M., Téllez-Álvarez, J., Bladé, E., Gómez-Valentín, M. 2019. Simulating the hydrodynamics of sewer-grates using a 2D-hydraulic model, in: 5th International Conference SimHydro, 20-22 November, Nice (France), p. 8. https://doi.org/10.1007/978-981-15-5436-0_64 | es_ES |
dc.description.references | Sanz-Ramos, M., Martí-Cardona, B., Bladé, E., Seco, I., Amengual, A., Roux, H., Romero, R. 2020. NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. J. Hydrol. Eng., 25, 05020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979 | es_ES |
dc.description.references | Sanz-Ramos, M., Andrade, C.A., Oller, P., Furdada, G., Bladé, E., Martínez-Gomariz, E. 2021a. Reconstructing the Snow Avalanche of Coll de Pal 2018 (SE Pyrenees). GeoHazards, 2, 196–211. https://doi.org/10.3390/geohazards2030011 | es_ES |
dc.description.references | Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., Aragón-Hernández, J.L. 2021b. Interpreting the Manning Roughness Coefficient in Overland Flow Simulations with Coupled Hydrological-Hydraulic Distributed Models. Water, 13, 3433. https://doi.org/10.3390/w13233433 | es_ES |
dc.description.references | Sanz-Ramos, M., Olivares, G., Bladé, E. 2022. Experimental characterization and two-dimensional hydraulic-hydrologic modelling of the infiltration process through permeable pavements. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 38. https://doi.org/10.23967/j.rimni.2022.03.012 | es_ES |
dc.description.references | Sanz-Ramos, M., Bladé, E., Oller, P., Furdada, G. 2023. Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations. J. Glaciol., 1–17. https://doi.org/10.1017/jog.2023.48 | es_ES |
dc.description.references | Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177–215. https://doi.org/10.1017/S0022112089000340 | es_ES |
dc.description.references | Schaub, Y., Huggel, C., Cochachin, A. 2016. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru. Landslides, 13, 1445–1459. https://doi.org/10.1007/s10346-015-0658-2 | es_ES |
dc.description.references | Schraml, K., Thomschitz, B., McArdell, B.W., Graf, C., Kaitna, R. 2015. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat. Hazards Earth Syst. Sci., 15, 1483–1492. https://doi.org/10.5194/nhess-15-1483-2015 | es_ES |
dc.description.references | Schweizer, J. 1999. Review of dry snow slab avalanche release. Cold Reg. Sci. Technol., 30, 43–57. https://doi.org/10.1016/S0165-232X(99)00025-7 | es_ES |
dc.description.references | Stefania, S., Zugliani, D., Rosatti, G. 2020. Dense snow avalanche modelling with Voellmy rheology: TRENT2D vs RAMMS2D, in: Vistual Snow Science Workshop - VSSW 2020. 4 - 6 Oct. Fernie, Canada. | es_ES |
dc.description.references | Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science. | es_ES |
dc.description.references | Tiefenbacher, F., Kern, M.A. 2004. Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg. Sci. Technol., 38, 17–30. https://doi.org/10.1016/S0165-232X(03)00060-0 | es_ES |
dc.description.references | Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/b79761 | es_ES |
dc.description.references | Vázquez-Cendón, M.E. 1999. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys., 148, 497–526. https://doi.org/10.1006/jcph.1998.6127 | es_ES |
dc.description.references | Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73, 15. https://doi.org/10.5169/seals-61891 | es_ES |
dc.description.references | Zugliani, D., Rosatti, G. 2021. TRENT2D❄: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems. Cold Reg. Sci. Technol. 190, 103343. https://doi.org/10.1016/j.coldregions.2021.103343 | es_ES |