- -

El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanz-Ramos, Marcos es_ES
dc.contributor.author Bladé, Ernest es_ES
dc.contributor.author Sánchez-Juny, Martí es_ES
dc.date.accessioned 2023-11-07T10:41:29Z
dc.date.available 2023-11-07T10:41:29Z
dc.date.issued 2023-10-31
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/199423
dc.description.abstract [EN] The numerical modeling of non-Newtonian fluids (such as mining tailings, snow avalanches, etc.) requires the consideration of specific rheological models to calculate shear stress. The Voellmy friction model is one of the most popular theories, especially in snow avalanche modeling. Recently, Bartelt proposed a cohesion model to account for this intrinsic physical property in some fluids. However, the physical interpretation of the range of values for the Voellmy-Bartelt friction-cohesion model has not been sufficiently investigated, and this work aims to fill this gap. The results show that the Voellmy model dominates avalanche dynamics, and the cohesion model allows for the representation of long tails, while the friction and cohesion parameters can vary over a wide range. Additionally, a definition for the turbulent friction coefficient is proposed based on CORINE land use maps and the Manning coefficient for flood mapping. es_ES
dc.description.abstract [ES] La modelización numérica de fluidos no Newtonianos (relaves mineros, avalanchas de nieve, etc.) requiere la consideración de modelos reológicos específicos para calcular el esfuerzo cortante. El modelo de fricción de Voellmy es una de las teorías más populares, especialmente en el modelado de avalanchas de nieve. Recientemente, Bartelt propuso un modelo de cohesión para dar cuenta de esta propiedad física intrínseca de algunos fluidos. Sin embargo, la interpretación física del rango de valores del modelo de fricción-cohesión de Voellmy-Bartelt no ha sido suficientemente investigada, y este trabajo pretende llenar este vacío. Los resultados muestran que el modelo de Voellmy domina la dinámica de la avalancha y el modelo de cohesión permite la representación de colas largas, mientras que los parámetros de fricción y cohesión pueden variar dentro de un amplio rango. Adicionalmente, se propone la definición de un valor para el coeficiente de fricción turbulento basado en los mapas de usos del suelo del CORINE y el coeficiente de Manning para el mapeo de inundaciones. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del Agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Non-Newtonian fluids es_ES
dc.subject Two-dimensional numerical modelling es_ES
dc.subject Rheological models es_ES
dc.subject Snow avalanches es_ES
dc.subject Fluidos no Newtonianos es_ES
dc.subject Modelización numérica bidimensional es_ES
dc.subject Modelos reológicos es_ES
dc.subject Avalanchas de nieve es_ES
dc.title El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa es_ES
dc.title.alternative The role of friction y cohesion terms in two-dimensional modelling of non-Newtonian fluids: dense snow avalanches es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2023.20080
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sanz-Ramos, M.; Bladé, E.; Sánchez-Juny, M. (2023). El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa. Ingeniería del Agua. 27(4):295-310. https://doi.org/10.4995/ia.2023.20080 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2023.20080 es_ES
dc.description.upvformatpinicio 295 es_ES
dc.description.upvformatpfin 310 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\20080 es_ES
dc.description.references Arcement, G.J., Schneider, V.R. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains, Paper 2339. ed, USGS Water-Supply. 19. Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box, 25425, Denver, CO 80225. https://doi.org/10.3133/wsp2339 es_ES
dc.description.references Barnes, H.H. 1969. Roughness characteristics of natural channels. J. Hydrol., 7, 354. https://doi.org/10.1016/0022-1694(69)90113-9 es_ES
dc.description.references Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L. 2017. RAMMS: Avalanche User Manual. WSL Institute for Snow and Avalanche Research SLF, Davos, Swiss. es_ES
dc.description.references Bartelt, P., Feistl, T., Bhler, Y., Buser, O. 2012. Overcoming the stauchwall: Viscoelastic stress redistribution and the start of full-depth gliding snow avalanches. Geophys. Res. Lett., 39, 1–6. https://doi.org/10.1029/2012GL052479 es_ES
dc.description.references Bartelt, P., Salm, B., Gruber, U. 1999. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol., 45, 242–254. https://doi.org/10.3189/s002214300000174x es_ES
dc.description.references Bartelt, P., Valero, C.V., Feistl, T., Christen, M., Bühler, Y., Buser, O. 2015. Modelling cohesion in snow avalanche flow. J. Glaciol., 61, 837–850. https://doi.org/10.3189/2015JoG14J126 es_ES
dc.description.references Bermúdez, A., Dervieux, A., Desideri, J.-A., Vázquez, M.E. 1998. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng., 155, 49–72. https://doi.org/10.1016/S0045-7825(97)85625-3 es_ES
dc.description.references Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing. 30, 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 es_ES
dc.description.references Bladé, E., Gómez-Valentín, M., Sánchez-Juny, M., Dolz, J. 2008. Preserving steady-state in one-dimensional finite-volume computations of river flow. J. Hydraul. Eng., 134, 1343–1347. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1343) es_ES
dc.description.references Bladé, E., Sanz-Ramos, M., Dolz, J., Expósito-Pérez, J., Sánchez-Juny, M. 2019. Modelling flood propagation in the service galleries of a nuclear power plant. Nucl. Eng. Des., 352, 110180. https://doi.org/10.1016/j.nucengdes.2019.110180 es_ES
dc.description.references Bladé, E., Valentín, M.G., Sánchez-Juny, M., Dolz, J. 2012. Source term treatment of SWEs using the surface gradient upwind method. J. Hydraul. Res., 50, 447–448. https://doi.org/10.1080/00221686.2012.707887 es_ES
dc.description.references Bouchet, A., Naaim, M., Bellot, H., Ousset, F. 2004. Experimental study of dense snow avalanches: Velocity profiles in steady and fully developed flows. Ann. Glaciol., 38, 30–35. https://doi.org/10.3189/172756404781815130 es_ES
dc.description.references Bouchet, A., Naaim, M., Ousset, F., Bellot, H., Cauvard, D. 2003. Experimental determination of constitutive equations for dense and dry avalanches: Presentation of the set-up and first results. Surv. Geophys., 24, 525–541. https://doi.org/10.1023/B:GEOP.0000006080.91951.cd es_ES
dc.description.references Brugnot, G. 2000. SAME Avalanche mapping, model validation and warning systems. Office for European Commision. Official Publications of the European Communities, Luxemburg. es_ES
dc.description.references CCA, 2016. Technical Aspects of Snow Avalanche Risk Management─Resources and Guidelines for Avalanche Practitioners in Canada. Revelstoke, BC, Canada: Canadian Avalanche Association. es_ES
dc.description.references Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resour. Res., 51, 5464–5486. https://doi.org/10.1002/2014WR016547 es_ES
dc.description.references Cea, L., Puertas, J., Vázquez-Cendón, M.-E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Arch. Comput. Methods Eng., 14, 303–341. https://doi.org/10.1007/s11831-007-9009-3 es_ES
dc.description.references Chevrel, M.O., Labroquère, J., Harris, A.J.L., Rowland, S.K. 2018. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties. Comput. Geosci., 111, 167–180. https://doi.org/10.1016/j.cageo.2017.11.009 es_ES
dc.description.references Christen, M., Bartelt, P., Gruber, U., Issler, D. 2001. AVAL-1D — numerical calculations of dense flow and powder snow avalanches. Swiss Federal Institute for Snow and Avalanche Research, Davos, Switzerland. Technical report. es_ES
dc.description.references Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005 es_ES
dc.description.references Dent, J.D., Lang, T.E. 1982. Experiments on mechanics of flowing snow. Cold Reg. Sci. Technol., 5, 253–258. https://doi.org/10.1016/0165-232X(82)90018-0 es_ES
dc.description.references Dreier, L., Bühler, Y., Steinkogler, W., Feistl, T., Christen, M., Bartelt, P. 2014. Modelling Small and Frequent Avalanches, in: International Snow Science Workshop 2014 Proceedings. 29 Sep - 3 Oct, Banff, Canada, p. 8. es_ES
dc.description.references Ebrahmimi, N.G., Fathi-Moghadam, M., Kashefipour, S.M., Saneie, M., Ebrahimi, K. 2008. Effects of flow and vegetation states on river roughness coefficients. J. Appl. Sci., 8, 2118–2123. https://doi.org/10.3923/jas.2008.2118.2123 es_ES
dc.description.references EEA, 2000. CORINE Land Cover technical guide - Addendum 2000. European Enviromental Agency Technical report No 40. Copenhague, Denmark. es_ES
dc.description.references Eglit, M., Yakubenko, A., Zayko, J. 2020. A Review of Russian Snow Avalanche Models—From Analytical Solutions to Novel 3D Models. Geosciences, 10, 77. https://doi.org/10.3390/geosciences10020077 es_ES
dc.description.references Faccanoni, G., Mangeney, A. 2013. Exact solution for granular flows. Int. J. Numer. Anal. Methods Geomech., 37, 1408–1433. https://doi.org/10.1002/nag.2124 es_ES
dc.description.references Fischer, J.T., Kofler, A., Fellin, W., Granig, M., Kleemayr, K. 2015. Multivariate parameter optimization for computational snow avalanche simulation. J. Glaciol., 61, 875–888. https://doi.org/10.3189/2015JoG14J168 es_ES
dc.description.references Fischer, J.T., Kowalski, J., Pudasaini, S.P., Miller, S.A. 2009. Dynamic avalanche modeling in natural terrain. ISSW 09 - Int. Snow Sci. Work. Proc. 448–453. es_ES
dc.description.references Gauer, P. 2014. Comparison of avalanche front velocity measurements and implications for avalanche models. Cold Reg. Sci. Technol., 97, 132–150. https://doi.org/10.1016/j.coldregions.2013.09.010 es_ES
dc.description.references Gauer, P., Issler, D., Lied, K., Kristensen, K., Sandersen, F. 2008. On snow avalanche flow regimes: Inferences from observations and measurements, in: ISSW - International Snow Science Workshop 2008 Proceedings, Whistler, Canada, 21–27 September, pp. 717–723. es_ES
dc.description.references Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J. 2017. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation. Cryosphere, 11, 217–228. https://doi.org/10.5194/tc-11-217-2017 es_ES
dc.description.references Gaume, J., Van Herwijnen, A., Chambon, G., Wever, N., Schweizer, J., Gast, T.F., Angeles, L., Herwijnen, A. Van, Jiang, C. 2018. Unified modeling of the release and flow of snow avalanches using the Material Point Method, in: ISSW - International Snow Science Workshop Proceedings 2018. Innsbruck, Austria. es_ES
dc.description.references Gaume, J., van Herwijnen, A., Gast, T., Teran, J., Jiang, C. 2019. Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method. Cold Reg. Sci. Technol., 168, 102847. https://doi.org/10.1016/j.coldregions.2019.102847 es_ES
dc.description.references Green, J.C. 2005. Modelling flow resistance in vegetated streams: Review and development of new theory. Hydrol. Process., 19, 1245–1259. https://doi.org/10.1002/hyp.5564 es_ES
dc.description.references Gruber, U., Bartelt, P. 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Model. Softw., 22, 1472–1481. https://doi.org/10.1016/j.envsoft.2007.01.001 es_ES
dc.description.references Gubler, H. 1987. Measurements and modelling of snow avalanche speeds. Avalanche formation, movement and effects, in: Proceedings of the Davos Symposium. September 1986, vol. 162. IAHS Publ., pp. 405–420. es_ES
dc.description.references Heredia, M.B., Eckert, N., Prieur, C., Thibert, E. 2020. Bayesian calibration of an avalanche model from autocorrelated measurements along the flow: Application to velocities extracted from photogrammetric images. J. Glaciol., 66(257), 373–385. https://doi.org/10.1017/jog.2020.11 es_ES
dc.description.references Hungr, O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J., 32, 610–623. https://doi.org/10.1139/t95-063 es_ES
dc.description.references Hussin, H.Y., Quan-Luna, B., Van Westen, C.J., Christen, M., Malet, J.P., Van Asch, T.W.J. 2012. Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Nat. Hazards Earth Syst. Sci., 12, 3075–3090. https://doi.org/10.5194/nhess-12-3075-2012 es_ES
dc.description.references Hutter, K., Koch, T., Plüess, C., Savage, S.B. 1995. The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mech., 109, 127–165. https://doi.org/10.1007/BF01176820 es_ES
dc.description.references Issler, D., Gauer, P. 2008. Exploring the significance of the fluidized flow regime for avalanche hazard mapping. Ann. Glaciol., 49, 193–198. https://doi.org/10.3189/172756408787814997 es_ES
dc.description.references Issler, D., Jenkins, J.T., McElwaine, J.N. 2018. Comments on avalanche flow models based on the concept of random kinetic energy. J. Glaciol., 64, 148–164. https://doi.org/10.1017/jog.2017.62 es_ES
dc.description.references Jaedicke, C., Kern, M.A., Gauer, P., Baillifard, M.A., Platzer, K. 2008. Chute experiments on slushflow dynamics. Cold Reg. Sci. Technol., 51, 156–167. https://doi.org/10.1016/j.coldregions.2007.03.011 es_ES
dc.description.references Jamieson, B., Margreth, S., Jones, A. 2008. Application and Limitations of Dynamic Models for Snow Avalanche Hazard Mapping, in: Proceedings of the International Snow Science Workshop, Whistler, BC. pp. 730–739. es_ES
dc.description.references Julien, P.Y., León, C.A. 2000. Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Workshop on the Debris Flow Disaster 27 November–1 December 1999. pp. 1–15. es_ES
dc.description.references Kelfoun, K. 2011. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J. Geophys. Res. Solid Earth, 116, 1–14. https://doi.org/10.1029/2010JB007622 es_ES
dc.description.references Keylock, C.J., Barbolini, M. 2011. Snow avalanche impact pressure - vulnerability relations for use in risk assessment. Can. Geotech. J., 38, 227–238. https://doi.org/10.1139/t00-100 es_ES
dc.description.references Lang, T.E., Dent, J.D. 1983. Basal surface-layer properties in flowing snow. Ann. Glaciol., 4, 158–162. https://doi.org/10.3189/S0260305500005401 es_ES
dc.description.references Lang, T.E., Dent, J.D. 1980. Scale modeling of snow-avalanche impact on structures. J. Glaciol., 26, 189–196. https://doi.org/10.1017/S0022143000010728 es_ES
dc.description.references LeVeque, R.L. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts Appl. Math. 31. https://doi.org/10.1017/CBO9780511791253 es_ES
dc.description.references Maggioni, M., Barbero, M., Barpi, F., Borri-Brunetto, M., De Biagi, V., Freppaz, M., Frigo, B., Pallara, O., Chiaia, B. 2019. Snow Avalanche Impact Measurements at the Seehore Test Site in Aosta Valley (NW Italian Alps). Geosciences, 9, 471. https://doi.org/10.3390/geosciences9110471 es_ES
dc.description.references Maggioni, M., Bovet, E., Dreier, L., Buehler, Y., Godone, D., Bartelt, P., Freppaz, M., Chiaia, B., Segor, V. 2013. Influence of summer and winter surface topography on numerical avalanche simulations, in: ISSW - International Snow Science Workshop 2013, Grenoble Chamonix-Mont-Blanc, France, pp. 591–598. es_ES
dc.description.references Maggioni, M., Gruber, U. 2003. The influence of topographic parameters on avalanche release dimension and frequency. Cold Reg. Sci. Technol., 37, 407–419. https://doi.org/10.1016/S0165-232X(03)00080-6 es_ES
dc.description.references MAGRAMA, 2011. Methodological Guide for the Development of the National Flood Zone Mapping System [in Spanish]. Ministerio de Medio Ambiente y Medio Rural y Marino. Gobierno de España: Madrid, España. es_ES
dc.description.references Margreth, S. 2016. Ausscheiden von Schneegleiten und Schneedruck in Gefahrenkarten. WSL Berichte, 47. Birmensdorf, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL. es_ES
dc.description.references Margreth, S., Funk, M. 1999. Hazard mapping for ice and combined snow/ice avalanches — two case studies from the Swiss and Italian Alps. Cold Reg. Sci. Technol., 30, 159–173. https://doi.org/10.1016/S0165-232X(99)00027-0 es_ES
dc.description.references McClung, D.M., Stethem, C.J., Schaerer, P.A., Jamieson, J.B. 2002. Guidelines for Snow Avalanche Risk Determination and Mapping in Canada. Canadian Avalanche Association, Revelstoke, BC. es_ES
dc.description.references Medina, V., Hürlimann, M., Bateman, A. 2008. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5, 127–142. https://doi.org/10.1007/s10346-007-0102-3 es_ES
dc.description.references Naaim, M., Durand, Y., Eckert, N., Chambon, G. 2013. Dense avalanche friction coefficients: influence of physical properties of snow. J. Glaciol., 59, 771–782. https://doi.org/10.3189/2013JoG12J205 es_ES
dc.description.references O’Hare, M.T., McGahey, C., Bissett, N., Cailes, C., Henville, P., Scarlett, P. 2010. Variability in roughness measurements for vegetated rivers near base flow, in England and Scotland. J. Hydrol., 385, 361–370. https://doi.org/10.1016/j.jhydrol.2010.02.036 es_ES
dc.description.references Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P. 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Reg. Sci. Technol., 64, 190–198. https://doi.org/10.1016/j.coldregions.2010.08.011 es_ES
dc.description.references Pirulli, M., Sorbino, G. 2008. Assessing potential debris flow runout: A comparison of two simulation models. Nat. Hazards Earth Syst. Sci., 8, 961–971. https://doi.org/10.5194/nhess-8-961-2008 es_ES
dc.description.references Platzer, K., Bartelt, P., Jaedicke, C. 2007a. Basal shear and normal stresses of dry and wet snow avalanches after a slope deviation. Cold Reg. Sci. Technol., 49, 11–25. https://doi.org/10.1016/j.coldregions.2007.04.003 es_ES
dc.description.references Platzer, K., Bartelt, P., Kern, M. 2007b. Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophys. Res. Lett., 34, 1–5. https://doi.org/10.1029/2006GL028670 es_ES
dc.description.references Podolskiy, E.A., Chambon, G., Naaim, M., Gaume, J. 2013. A review of finite-element modelling in snow mechanics. J. Glaciol., 59, 1189–1201. https://doi.org/10.3189/2013jog13j121 es_ES
dc.description.references Ramos-Fuertes, A., Marti-Cardona, B., Bladé, E., Dolz, J. 2013. Envisat/ASAR Images for the Calibration of Wind Drag Action in the Doñana Wetlands 2D Hydrodynamic Model. Remote Sens., 6, 379–406. https://doi.org/10.3390/rs6010379 es_ES
dc.description.references Rastello, M., Bouchet, A. 2007. Surface oscillations in channeled snow flows. Cold Reg. Sci. Technol., 49, 134–144. https://doi.org/10.1016/j.coldregions.2007.03.003 es_ES
dc.description.references Roe, P.L. 1986. A basis for the upwind differencing of the two-dimensional unsteady Euler equations. Numer. Methods Fluid Dyn., 2, 55–80. es_ES
dc.description.references Rognon, P.G., Chevoir, F., Bellot, H., Ousset, F., Naaïm, M., Coussot, P. 2008. Rheology of dense snow flows: Inferences from steady state chute-flow experiments. J. Rheol., 52, 729–748. https://doi.org/10.1122/1.2897609 es_ES
dc.description.references Rudolf-miklau, F., Sauermoser, S., Mears, A.I. 2015. The Technical Avalanche Protecion Handbook. Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG. Berlin, Germany. https://doi.org/10.1002/9783433603840 es_ES
dc.description.references Rudolf-Miklau, F., Sauermoser, S., Mears, A.I. 2014. The Technical Avalanche Protection Handbook. Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin, Germany. https://doi.org/10.1002/9783433603840 es_ES
dc.description.references Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., Wohl, E. 2019. Characterization of wood-laden flows in rivers. Earth Surf. Process. Landforms, 44, 1694–1709. https://doi.org/10.1002/esp.4603 es_ES
dc.description.references Salm, B., Burkard, A., Guhler, H. 1990. Berechnung von Fliesslawinen: eine Anleitung fur Praktiker mit Beispielen. Eidgenössische Institut für Schnee- und Lawinenforschung. es_ES
dc.description.references Sanz-Ramos, M., Amengual, A., Bladé, E., Romero, R., Roux, H. 2018a. Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and highresolution meteorological model. E3S Web Conf. 40, 8. https://doi.org/10.1051/e3sconf/20184006028 es_ES
dc.description.references Sanz-Ramos, M., Bladé, E., Niñerola, D., Palau-Ibars, A. 2018b. Evaluación numérico-experimental del comportamiento histérico del coeficiente de rugosidad de los macrófitos. Ing. del Agua, 22, 109–124. https://doi.org/10.4995/ia.2018.8880 es_ES
dc.description.references Sanz-Ramos, M., Téllez-Álvarez, J., Bladé, E., Gómez-Valentín, M. 2019. Simulating the hydrodynamics of sewer-grates using a 2D-hydraulic model, in: 5th International Conference SimHydro, 20-22 November, Nice (France), p. 8. https://doi.org/10.1007/978-981-15-5436-0_64 es_ES
dc.description.references Sanz-Ramos, M., Martí-Cardona, B., Bladé, E., Seco, I., Amengual, A., Roux, H., Romero, R. 2020. NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. J. Hydrol. Eng., 25, 05020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979 es_ES
dc.description.references Sanz-Ramos, M., Andrade, C.A., Oller, P., Furdada, G., Bladé, E., Martínez-Gomariz, E. 2021a. Reconstructing the Snow Avalanche of Coll de Pal 2018 (SE Pyrenees). GeoHazards, 2, 196–211. https://doi.org/10.3390/geohazards2030011 es_ES
dc.description.references Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., Aragón-Hernández, J.L. 2021b. Interpreting the Manning Roughness Coefficient in Overland Flow Simulations with Coupled Hydrological-Hydraulic Distributed Models. Water, 13, 3433. https://doi.org/10.3390/w13233433 es_ES
dc.description.references Sanz-Ramos, M., Olivares, G., Bladé, E. 2022. Experimental characterization and two-dimensional hydraulic-hydrologic modelling of the infiltration process through permeable pavements. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., 38. https://doi.org/10.23967/j.rimni.2022.03.012 es_ES
dc.description.references Sanz-Ramos, M., Bladé, E., Oller, P., Furdada, G. 2023. Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations. J. Glaciol., 1–17. https://doi.org/10.1017/jog.2023.48 es_ES
dc.description.references Savage, S.B., Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177–215. https://doi.org/10.1017/S0022112089000340 es_ES
dc.description.references Schaub, Y., Huggel, C., Cochachin, A. 2016. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru. Landslides, 13, 1445–1459. https://doi.org/10.1007/s10346-015-0658-2 es_ES
dc.description.references Schraml, K., Thomschitz, B., McArdell, B.W., Graf, C., Kaitna, R. 2015. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat. Hazards Earth Syst. Sci., 15, 1483–1492. https://doi.org/10.5194/nhess-15-1483-2015 es_ES
dc.description.references Schweizer, J. 1999. Review of dry snow slab avalanche release. Cold Reg. Sci. Technol., 30, 43–57. https://doi.org/10.1016/S0165-232X(99)00025-7 es_ES
dc.description.references Stefania, S., Zugliani, D., Rosatti, G. 2020. Dense snow avalanche modelling with Voellmy rheology: TRENT2D vs RAMMS2D, in: Vistual Snow Science Workshop - VSSW 2020. 4 - 6 Oct. Fernie, Canada. es_ES
dc.description.references Tan, W.Y. 1992. Shallow Water Hydrodynamics, first Edit. ed. Elsevier Science. es_ES
dc.description.references Tiefenbacher, F., Kern, M.A. 2004. Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg. Sci. Technol., 38, 17–30. https://doi.org/10.1016/S0165-232X(03)00060-0 es_ES
dc.description.references Toro, E.F. 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/b79761 es_ES
dc.description.references Vázquez-Cendón, M.E. 1999. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys., 148, 497–526. https://doi.org/10.1006/jcph.1998.6127 es_ES
dc.description.references Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73, 15. https://doi.org/10.5169/seals-61891 es_ES
dc.description.references Zugliani, D., Rosatti, G. 2021. TRENT2D❄: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems. Cold Reg. Sci. Technol. 190, 103343. https://doi.org/10.1016/j.coldregions.2021.103343 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem