- -

Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

Mostrar el registro completo del ítem

Quintana-Molina, JR.; Sánchez-Cohen, I.; Jiménez-Jiménez, SI.; Marcial-Pablo, MDJ.; Trejo-Calzada, R.; Quintana-Molina, E. (2023). Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine. Revista de Teledetección. (62):21-38. https://doi.org/10.4995/raet.2023.19368

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199424

Ficheros en el ítem

Metadatos del ítem

Título: Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
Otro titulo: Calibración de la humedad volumétrica del suelo utilizando imágenes Landsat-8 y Sentinel-2 mediante Google Earth Engine
Autor: Quintana-Molina, José Rodolfo Sánchez-Cohen, Ignacio Jiménez-Jiménez, Sergio Iván Marcial-Pablo, Mariana de Jesús Trejo-Calzada, Ricardo Quintana-Molina, Emilio
Fecha difusión:
Resumen:
[EN] Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide ...[+]


[ES] La escasez de agua para la agricultura es cada vez más evidente producto de las alteraciones climáticas y el inadecuado manejo de este recurso. Por ende, el desarrollo de modelos digitales que ayuden a la mejora del ...[+]
Palabras clave: Satellite images , Models , Vegetation indices , Pixel distributions , Imágenes de satélite , Modelos , Índices de vegetación , Distribución de los píxeles
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2023.19368
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2023.19368
Agradecimientos:
This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Universidad Autónoma Chapingo, and INIFAP-CENID RASPA Centro Nacional de Investigación Disciplinaria en Relación Agua-Suelo-Planta-Atmósfera.[+]
Tipo: Artículo

References

Ambrosone, M., Matese, A., Di Gennaro, S. F., Gioli, B., Tudoroiu, M., Genesio, L., Toscano, P., 2020. Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach. International Journal of Applied Earth Observation and Geoinformation, 89, 102113. https://doi.org/10.1016/j.jag.2020.102113

Babaeian, E., Sadeghi, M., Franz, T.E., Jones, S., & Tuller, M. 2018. Mapping soil moisture with the OPtical TRApezoid Model (OPTRAM) based on long-term MODIS observations. Remote sensing of environment, 211, 425-440. https://doi.org/10.1016/j.rse.2018.04.029

Bouyoucos, G. J., 1936. Directions for making mechanical analyses of soils by the hydrometer method. Soil Science, 42(3), 225-230. https://doi.org/10.1097/00010694-193609000-00007 [+]
Ambrosone, M., Matese, A., Di Gennaro, S. F., Gioli, B., Tudoroiu, M., Genesio, L., Toscano, P., 2020. Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach. International Journal of Applied Earth Observation and Geoinformation, 89, 102113. https://doi.org/10.1016/j.jag.2020.102113

Babaeian, E., Sadeghi, M., Franz, T.E., Jones, S., & Tuller, M. 2018. Mapping soil moisture with the OPtical TRApezoid Model (OPTRAM) based on long-term MODIS observations. Remote sensing of environment, 211, 425-440. https://doi.org/10.1016/j.rse.2018.04.029

Bouyoucos, G. J., 1936. Directions for making mechanical analyses of soils by the hydrometer method. Soil Science, 42(3), 225-230. https://doi.org/10.1097/00010694-193609000-00007

Carballo, H. R., Sandoval, A. P., 2007. Evaluación participativa de la degradación del suelo en la Reserva de la Biosfera de Mapimi, Durango, México. Revista Chapingo Serie Zonas Aridas, 6(2), 247-254.

Carlson, T. N., Gillies, R. R., Perry, E. M., 1994. A method to make use of termal infrared temperatura and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9(1-2), 161-173. https://doi.org/10.1080/02757259409532220

Carlson, T. N., 2013. Triangle models and misconceptions. International Journal of Remote Sensing Applications, 3(3), 155-158.

Chander, G., Helder, D. L., 2009. Summary of current radiometric calibration corfficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing and Environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007

Dane, J. H., & Topp, G. C., 2002. Thermogravimetric determinations using convective oven-drying. In: Dane and G.C. Topp (eds). Methods of soil analysis. Part 4. physical methods. Soil Society of America, Inc., Madison. https://doi.org/10.2136/sssabookser5.4

Davis, J. L., Chudoviak, W. J., 1975. In situ meter for measuring relative permitive of soil. Geological Survey of Canada. https://doi.org/10.4095/104349

Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S.A. 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458, 110-117. https://doi.org/10.1016/j.jhydrol.2012.06.021

García, G. I., & Martínez, J. G., 2004. Caracterización de la Reserva de la Biosfera Mapimí Mediante el uso de sistemas de información geográfica. In Memorias del IV Simposio Internacional sobre la Flora Silvestre en Zonas Áridas. Universidad Autónoma de Chihuahua-Universidad de Sonora.

Google Earth Engine. Landsat Algorithms, Landsat collection structure. Retrived January 15, 2022, from https://developers.google.com/earth-engine/guides/landsat.

Hassanpour, R., Zarehaghi, D., Neyshabouri, M. R., Feizizadeh, B., Rahmati M., 2020. Modification on optical trapezoid model for accurate estimation of soil moisture content in a maize growing field. Journal of Applied Remote Sensing, 14(3), 034519-034519. https://doi.org/10.1117/1.JRS.14.034519

Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Lakhankar, T., Krakauer, N., Khanbilvardi, R., 2009. Applications of microwave remote sensing of soil moisture for agricultural applications. International Journal of Terraspace Science and Engineering, 2(1), 81-91. https://doi.org/10.3390/rs1020080

Lakshmi, V., 2012. Remote sensing of soil moisture. International Scholarly Research Notices Soil Sciences, 2013, 1-33. https://doi.org/10.1155/2013/424178

Mallick, K., Bhattacharya, B. K., Patel, N. K., 2009. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology, 149(8), 1327-1342. https://doi.org/10.1016/j.agrformet.2009.03.004

Mananze, S., Pôças, I., Cunha, M., 2019. Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique. Journal of Applied Remote Sensing, 13(2), 024519-024519. https://doi.org/10.1117/1.JRS.13.024519

Markhan, B.L., Barker, J. L., 1985. Spectral characterization of the LANDSAT Thematic Mapper sensors. International Journal of Remote Sensing. 6(5), 697-716. https://doi.org/10.1080/01431168508948492

Montaña, C., 1988. Estudio integrado de los recursos vegetación, suelo y agua en la Reserva de la Biosfera de Mapimí. Instituto de Ecología, AC, México, DF.

Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246-263. https://doi.org/10.1016/0034-4257(94)90020-5

Pandey, R., Goswami, S., Sarup, J., Matin, S., 2021. The thermal-optical trapezoid model-based soil moisture estimation using Landsat-8 data. Modeling Earth Systems and Environment, 7, 1029-1037. https://doi.org/10.1007/s40808-020-00975-8

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. https://doi.org/10.1016/0034-4257(94)90134-1

Rahimzadeh-Bajgiran, P., Berg, A. A., Champagne, C., Omasa, K. 2013. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 94-103. https://doi.org/10.1016/j.isprsjprs.2013.06.004

Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., Vereecken, H., 2018. Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 10(3), 1237-1263. https://doi.org/10.5194/essd-10-1237-2018

Rouse, J. W., 1973. Monitoring the vernal advancement and retrogradation of natural vegetation [NASA/GSFCT Type II Report]. Greenbelt, MD: NASA/Goddard Space Flight Center.

Sadeghi, M., Jones, S. B., Philpot, W. D., 2015. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environment, 164, 66-76. https://doi.org/10.1016/j.rse.2015.04.007

Sadeghi, M., Babaeian, E., Tuller, M., Jones, S. B., 2017. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment, 198, 52-68. https://doi.org/10.1016/j.rse.2017.05.041

Santos, W. J. R., Silva, B. M., Oliveira, G. C., Volpato, M. M. L., Lima, J. M., Curi, N., Marques, J. J., 2014. Soil moisture in the root zone and its relation to plant vigor assessed by remote sensing at management scale. Geoderma, 221, 91-95. https://doi.org/10.1016/j.geoderma.2014.01.006

Şekertekin, A., Marangoz, A. M., Abdikan, S., 2018. Soil moisture mapping using Sentinel-1A synthetic aperture radar data. International Journal of Environment and Geoinformatics, 5(2), 178-188. https://doi.org/10.30897/ijegeo.425606

Stathopoulou, M., Cartalis, C., 2007. Daytime urban heat islands From Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358-368. https://doi.org/10.1016/j.solener.2006.06.014

Tabatabaeenejad, A., Burgin, M., Duan, X., Moghaddam, M., 2014. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 645-658. https://doi.org/10.1109/TGRS.2014.2326839

Tollenaar, M., Lee, E. A., 2002. Yield potential, yield stability and stress tolerance in maize. Field crops research, 75(2-3), 161-169. https://doi.org/10.1016/S0378-4290(02)00024-2

United State Deparment of Agriculture. (1977). Texture Triangule USDA. 36(1).

United States Geological Survey., 2022. Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Sioux Falls, South Dakota. Department of the Interior U.S. Geological Survey.

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., Hopmans, J. W., 2008. On the value of soil moisture measurements in vadose zone hydrology: A review. Water resources research, 44(4). https://doi.org/10.1029/2008WR006829

Wang, L., Qu, J. J., 2009. Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), 237-247. https://doi.org/10.1007/s11707-009-0023-7

Weng, Q., Lu, D., Schubring, J., 2004. Estimation of land Surface temperatura-vegetation abundance relationship for urban heat islands. Remote Sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem