- -

Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quintana-Molina, José Rodolfo es_ES
dc.contributor.author Sánchez-Cohen, Ignacio es_ES
dc.contributor.author Jiménez-Jiménez, Sergio Iván es_ES
dc.contributor.author Marcial-Pablo, Mariana de Jesús es_ES
dc.contributor.author Trejo-Calzada, Ricardo es_ES
dc.contributor.author Quintana-Molina, Emilio es_ES
dc.date.accessioned 2023-11-07T11:43:04Z
dc.date.available 2023-11-07T11:43:04Z
dc.date.issued 2023-07-28
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/199424
dc.description.abstract [EN] Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate management of this resource. Therefore, developing digital models that help improve water resource management to provide solutions to agronomic problems in northern Mexico is necessary. In this context, the objective of the present research is to calibrate the Optical Trapezoid (OPTRAM) and Thermal-Optical Trapezoid (TOTRAM) models to estimate the volumetric soil moisture at different depths through vegetation indices derived from Landsat-8 and Sentinel-2 satellite images using Google Earth Engine (GEE). Agricultural areas under gravity irrigation and rainfed runoff in the Comarca Lagunera, the lower part of the Hydrological Region No. 36 of the Nazas and Aguanaval rivers were selected for in-situ measurements. The OPTRAM and TOTRAM normalized moisture content (W) estimates were compared with in-situ volumetric soil moisture (θ) data. Results indicate that the predictions of OPTRAM errors using Sentinel-2 images showed RMSE between 0.033 to 0.043 cm3 cm-3 and R2 between 0.66 to 0.75, whereas Landsat-8 errors showed RSME from 0.036 to from 0.036 to 0.057 cm3 cm-3 and R2 between 0.70 to 0.81. On the other hand, TOTRAM errors showed RMSE between 0.045 to 0.053 cm3 cm-3 and R2 between 0.62 to 0.85 through calibrations. This study made it possible to evaluate the most accurate combinations of the pixel distributions of each model and vegetation indices for the estimation of volumetric soil moisture within the different phenological stages of the crops. es_ES
dc.description.abstract [ES] La escasez de agua para la agricultura es cada vez más evidente producto de las alteraciones climáticas y el inadecuado manejo de este recurso. Por ende, el desarrollo de modelos digitales que ayuden a la mejora del manejo de los recursos hídricos para proporcionar soluciones a los problemas agronómicos al norte de México es necesario. En este contexto, el objetivo de la presente investigación es calibrar los modelos Óptico Trapezoidal (OPTRAM) y Térmico-Óptico Trapezoidal (TOTRAM) para estimar la humedad volumétrica del suelo a diferentes profundidades a través de índices de vegetación derivado de imágenes de satelitales Landsat-8 y Sentinel-2 utilizando Google Earth Engine (GEE). Áreas agrícolas seleccionadas bajo riego por gravedad y temporal por escorrentías en la Comarca Lagunera, parte baja de la Región Hidrológica No. 36 de los ríos Nazas y Aguanaval fueron seleccionadas para mediciones in-situ. Las estimaciones del contenido normalizado de humedad (W) de OPTRAM y TOTRAM fueron comparados con datos de humedad volumétrica del suelo (θ) in-situ. Los resultados indican que las predicciones de los errores de OPTRAM utilizando imágenes Sentinel-2 mostraron RMSE entre 0.033 a 0.043 cm3 cm-3 y R2 entre 0.66 a 0.75. Mientras, los errores de Landsat-8 mostraron RSME de 0.036 a 0.057 cm3 cm-3 y R2 entre 0.70 a 0.81. Por otra parte, los errores de TOTRAM mostraron RMSE entre 0.045 a 0.053 cm3 cm-3 y R2 entre 0.62 a 0.85 a través de las calibraciones. Este estudio permitió evaluar, las combinaciones más precisas de las distribuciones de los píxeles de cada modelo e índice de vegetación para la estimación de humedad volumétrica del suelo dentro de las distintas etapas fenológicas de los cultivos. es_ES
dc.description.sponsorship This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Universidad Autónoma Chapingo, and INIFAP-CENID RASPA Centro Nacional de Investigación Disciplinaria en Relación Agua-Suelo-Planta-Atmósfera. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Satellite images es_ES
dc.subject Models es_ES
dc.subject Vegetation indices es_ES
dc.subject Pixel distributions es_ES
dc.subject Imágenes de satélite es_ES
dc.subject Modelos es_ES
dc.subject Índices de vegetación es_ES
dc.subject Distribución de los píxeles es_ES
dc.title Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine es_ES
dc.title.alternative Calibración de la humedad volumétrica del suelo utilizando imágenes Landsat-8 y Sentinel-2 mediante Google Earth Engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2023.19368
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Quintana-Molina, JR.; Sánchez-Cohen, I.; Jiménez-Jiménez, SI.; Marcial-Pablo, MDJ.; Trejo-Calzada, R.; Quintana-Molina, E. (2023). Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine. Revista de Teledetección. (62):21-38. https://doi.org/10.4995/raet.2023.19368 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2023.19368 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 38 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 62 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\19368 es_ES
dc.contributor.funder Consejo Nacional de Humanidades, Ciencias y Tecnologías, México es_ES
dc.description.references Ambrosone, M., Matese, A., Di Gennaro, S. F., Gioli, B., Tudoroiu, M., Genesio, L., Toscano, P., 2020. Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach. International Journal of Applied Earth Observation and Geoinformation, 89, 102113. https://doi.org/10.1016/j.jag.2020.102113 es_ES
dc.description.references Babaeian, E., Sadeghi, M., Franz, T.E., Jones, S., & Tuller, M. 2018. Mapping soil moisture with the OPtical TRApezoid Model (OPTRAM) based on long-term MODIS observations. Remote sensing of environment, 211, 425-440. https://doi.org/10.1016/j.rse.2018.04.029 es_ES
dc.description.references Bouyoucos, G. J., 1936. Directions for making mechanical analyses of soils by the hydrometer method. Soil Science, 42(3), 225-230. https://doi.org/10.1097/00010694-193609000-00007 es_ES
dc.description.references Carballo, H. R., Sandoval, A. P., 2007. Evaluación participativa de la degradación del suelo en la Reserva de la Biosfera de Mapimi, Durango, México. Revista Chapingo Serie Zonas Aridas, 6(2), 247-254. es_ES
dc.description.references Carlson, T. N., Gillies, R. R., Perry, E. M., 1994. A method to make use of termal infrared temperatura and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9(1-2), 161-173. https://doi.org/10.1080/02757259409532220 es_ES
dc.description.references Carlson, T. N., 2013. Triangle models and misconceptions. International Journal of Remote Sensing Applications, 3(3), 155-158. es_ES
dc.description.references Chander, G., Helder, D. L., 2009. Summary of current radiometric calibration corfficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing and Environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007 es_ES
dc.description.references Dane, J. H., & Topp, G. C., 2002. Thermogravimetric determinations using convective oven-drying. In: Dane and G.C. Topp (eds). Methods of soil analysis. Part 4. physical methods. Soil Society of America, Inc., Madison. https://doi.org/10.2136/sssabookser5.4 es_ES
dc.description.references Davis, J. L., Chudoviak, W. J., 1975. In situ meter for measuring relative permitive of soil. Geological Survey of Canada. https://doi.org/10.4095/104349 es_ES
dc.description.references Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S.A. 2012. A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458, 110-117. https://doi.org/10.1016/j.jhydrol.2012.06.021 es_ES
dc.description.references García, G. I., & Martínez, J. G., 2004. Caracterización de la Reserva de la Biosfera Mapimí Mediante el uso de sistemas de información geográfica. In Memorias del IV Simposio Internacional sobre la Flora Silvestre en Zonas Áridas. Universidad Autónoma de Chihuahua-Universidad de Sonora. es_ES
dc.description.references Google Earth Engine. Landsat Algorithms, Landsat collection structure. Retrived January 15, 2022, from https://developers.google.com/earth-engine/guides/landsat. es_ES
dc.description.references Hassanpour, R., Zarehaghi, D., Neyshabouri, M. R., Feizizadeh, B., Rahmati M., 2020. Modification on optical trapezoid model for accurate estimation of soil moisture content in a maize growing field. Journal of Applied Remote Sensing, 14(3), 034519-034519. https://doi.org/10.1117/1.JRS.14.034519 es_ES
dc.description.references Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X es_ES
dc.description.references Lakhankar, T., Krakauer, N., Khanbilvardi, R., 2009. Applications of microwave remote sensing of soil moisture for agricultural applications. International Journal of Terraspace Science and Engineering, 2(1), 81-91. https://doi.org/10.3390/rs1020080 es_ES
dc.description.references Lakshmi, V., 2012. Remote sensing of soil moisture. International Scholarly Research Notices Soil Sciences, 2013, 1-33. https://doi.org/10.1155/2013/424178 es_ES
dc.description.references Mallick, K., Bhattacharya, B. K., Patel, N. K., 2009. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology, 149(8), 1327-1342. https://doi.org/10.1016/j.agrformet.2009.03.004 es_ES
dc.description.references Mananze, S., Pôças, I., Cunha, M., 2019. Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique. Journal of Applied Remote Sensing, 13(2), 024519-024519. https://doi.org/10.1117/1.JRS.13.024519 es_ES
dc.description.references Markhan, B.L., Barker, J. L., 1985. Spectral characterization of the LANDSAT Thematic Mapper sensors. International Journal of Remote Sensing. 6(5), 697-716. https://doi.org/10.1080/01431168508948492 es_ES
dc.description.references Montaña, C., 1988. Estudio integrado de los recursos vegetación, suelo y agua en la Reserva de la Biosfera de Mapimí. Instituto de Ecología, AC, México, DF. es_ES
dc.description.references Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246-263. https://doi.org/10.1016/0034-4257(94)90020-5 es_ES
dc.description.references Pandey, R., Goswami, S., Sarup, J., Matin, S., 2021. The thermal-optical trapezoid model-based soil moisture estimation using Landsat-8 data. Modeling Earth Systems and Environment, 7, 1029-1037. https://doi.org/10.1007/s40808-020-00975-8 es_ES
dc.description.references Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. https://doi.org/10.1016/0034-4257(94)90134-1 es_ES
dc.description.references Rahimzadeh-Bajgiran, P., Berg, A. A., Champagne, C., Omasa, K. 2013. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 94-103. https://doi.org/10.1016/j.isprsjprs.2013.06.004 es_ES
dc.description.references Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., Vereecken, H., 2018. Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 10(3), 1237-1263. https://doi.org/10.5194/essd-10-1237-2018 es_ES
dc.description.references Rouse, J. W., 1973. Monitoring the vernal advancement and retrogradation of natural vegetation [NASA/GSFCT Type II Report]. Greenbelt, MD: NASA/Goddard Space Flight Center. es_ES
dc.description.references Sadeghi, M., Jones, S. B., Philpot, W. D., 2015. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environment, 164, 66-76. https://doi.org/10.1016/j.rse.2015.04.007 es_ES
dc.description.references Sadeghi, M., Babaeian, E., Tuller, M., Jones, S. B., 2017. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment, 198, 52-68. https://doi.org/10.1016/j.rse.2017.05.041 es_ES
dc.description.references Santos, W. J. R., Silva, B. M., Oliveira, G. C., Volpato, M. M. L., Lima, J. M., Curi, N., Marques, J. J., 2014. Soil moisture in the root zone and its relation to plant vigor assessed by remote sensing at management scale. Geoderma, 221, 91-95. https://doi.org/10.1016/j.geoderma.2014.01.006 es_ES
dc.description.references Şekertekin, A., Marangoz, A. M., Abdikan, S., 2018. Soil moisture mapping using Sentinel-1A synthetic aperture radar data. International Journal of Environment and Geoinformatics, 5(2), 178-188. https://doi.org/10.30897/ijegeo.425606 es_ES
dc.description.references Stathopoulou, M., Cartalis, C., 2007. Daytime urban heat islands From Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358-368. https://doi.org/10.1016/j.solener.2006.06.014 es_ES
dc.description.references Tabatabaeenejad, A., Burgin, M., Duan, X., Moghaddam, M., 2014. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 645-658. https://doi.org/10.1109/TGRS.2014.2326839 es_ES
dc.description.references Tollenaar, M., Lee, E. A., 2002. Yield potential, yield stability and stress tolerance in maize. Field crops research, 75(2-3), 161-169. https://doi.org/10.1016/S0378-4290(02)00024-2 es_ES
dc.description.references United State Deparment of Agriculture. (1977). Texture Triangule USDA. 36(1). es_ES
dc.description.references United States Geological Survey., 2022. Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Sioux Falls, South Dakota. Department of the Interior U.S. Geological Survey. es_ES
dc.description.references Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., Hopmans, J. W., 2008. On the value of soil moisture measurements in vadose zone hydrology: A review. Water resources research, 44(4). https://doi.org/10.1029/2008WR006829 es_ES
dc.description.references Wang, L., Qu, J. J., 2009. Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3(2), 237-247. https://doi.org/10.1007/s11707-009-0023-7 es_ES
dc.description.references Weng, Q., Lu, D., Schubring, J., 2004. Estimation of land Surface temperatura-vegetation abundance relationship for urban heat islands. Remote Sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem