- -

Groups whose prime graph on class sizes has a cut vertex

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Groups whose prime graph on class sizes has a cut vertex

Mostrar el registro completo del ítem

Dolfi, S.; Pacifici, E.; Sanus, L.; Sotomayor, V. (2021). Groups whose prime graph on class sizes has a cut vertex. Israel Journal of Mathematics. 244(2):775-805. https://doi.org/10.1007/s11856-021-2193-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199469

Ficheros en el ítem

Metadatos del ítem

Título: Groups whose prime graph on class sizes has a cut vertex
Autor: Dolfi, Silvio Pacifici, Emanuele Sanus, Lucia Sotomayor, Víctor
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] Let G be a finite group, and let Delta(G) be the prime graph built on the set of conjugacy class sizes of G: this is the simple undirected graph whose vertices are the prime numbers dividing some conjugacy class size ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Israel Journal of Mathematics. (issn: 0021-2172 )
DOI: 10.1007/s11856-021-2193-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11856-021-2193-2
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096872-B-I00/ES/GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2016%2F170//AYUDA CONSELLERIA PARA LA CONTRATACION DE PERSONAL INVESTIGADOR EN FORMACION-ORTIZ SOTOMAYOR (GRUPOS FACTORIZADOS Y CLASES DE CONJUGACIÓN)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103854GB-I00/ES/REPRESENTACIONES Y CARACTERES DE GRUPOS IV/
info:eu-repo/grantAgreement/MIUR//PRIN 2015TW9LSR_006/
Agradecimientos:
The research of the first and second authors is partially supported by the Italian PRIN 2015TW9LSR_006 "Group Theory and Applications" and by INdAM-GNSAGA. The research of the third author is supported by the Spanish ...[+]
Tipo: Artículo

References

D. Bubboloni, S. Dolfi, M. A. Iranmanesh and C. E. Praeger, On bipartite divisor graphs for group conjugacy class sizes, Journal of Pure and Applied Algebra 213 (2009), 1722–1734.

C. Casolo and S. Dolfi, The diameter of a conjugacy class graph of finite groups, Bulletin of the London Mathematical Society 28 (1996), 141–148.

C. Casolo and S. Dolfi, Products of primes in conjugacy class sizes and irreducible character degrees, Israel Journal of Mathematics 174 (2009), 403–418. [+]
D. Bubboloni, S. Dolfi, M. A. Iranmanesh and C. E. Praeger, On bipartite divisor graphs for group conjugacy class sizes, Journal of Pure and Applied Algebra 213 (2009), 1722–1734.

C. Casolo and S. Dolfi, The diameter of a conjugacy class graph of finite groups, Bulletin of the London Mathematical Society 28 (1996), 141–148.

C. Casolo and S. Dolfi, Products of primes in conjugacy class sizes and irreducible character degrees, Israel Journal of Mathematics 174 (2009), 403–418.

C. Casolo, S. Dolfi, E. Pacifici and L. Sanus, Groups whose prime graph on conjugacy class sizes has few complete vertices, Journal of Algebra 364 (2012), 1–12.

C. Casolo, S. Dolfi, E. Pacifici and L. Sanus, Incomplete vertices in the prime graph on conjugacy class sizes of finite groups, Journal of Algebra 376 (2013), 46–57.

S. Dolfi, Arithmetical conditions on the length of the conjugacy classes of a finite group, Journal of Algebra 174 (1995), 753–771.

S. Dolfi, On independent sets in the class graph of a finite group, Journal of Algebra 303 (2006), 216–224.

S. Dolfi, E. Pacifici, L. Sanus and V. Sotomayor, The prime graph on class sizes of a finite group has a bipartite complement, Journal of Algebra 542 (2020), 35–42.

I. M. Isaacs, Coprime group actions fixing all nonlinear irreducible characters, Canadian Journal of Mathematics 41 (1989), 68–82.

I. M. Isaacs, Finite Group Theory, Graduate Studies in mathematics, Vol. 92, American Mathematical Society, Providence, RI, 2008.

M. L. Lewis and Q. Meng, Solvable groups whose prime divisor character degree graphs are 1-connected, Monatshefte für Mathematik 190 (2019), 541–548.

O. Manz and T. R. Wolf, Representations of Solvable Groups, London Mathematical Society Lecture Note Series, Vol. 185, Cambridge University Press, Cambridge, 1993.

J. M. Riedl, Character degrees, class sizes and normal subgroups of a certain class of p-groups, Journal of Algebra 218 (1999), 190–215.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem