- -

Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre-Biel, Juan I. es_ES
dc.contributor.author Ferone, Daniele es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.contributor.author Faulin, Javier es_ES
dc.date.accessioned 2023-11-10T19:04:35Z
dc.date.available 2023-11-10T19:04:35Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199508
dc.description.abstract [EN] This paper analyzes a stochastic version of the vehicle routing problem in which customers' demands are not only stochastic but also correlated. In order to solve this stochastic and correlated optimization problem, a simheuristic approach is combined with an adaptive demand predictor. This predictor is based on the use of machine learning methods and Petri nets. The information on real demands, provided by the vehicles as they visit the nodes of the logistic network, allows for a real-time forecast of the demand, as well as for an updated estimate of the correlation between them. A constrained prediction is provided by our hybrid algorithm, which is able to forecast an increase of 50% in the mean value of the demands of all nodes. With a very limited amount of information and reduced computational requirements, our algorithm provides a forecast with a high degree of reliability and a balanced capacity to reject false positives as well as false negatives. To illustrate its effectiveness, the methodology is applied to a wide range of benchmarks. The results show the benefits of applying this methodology in a context of correlated variation of the demands. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21/C22, RED2018-102642-T) and the SEPIE Erasmus + Program, Spain (2019I-ES01-KA103-062602). We also want to acknowledge the support received from the CAN Foundation in Navarre, Spain (Grant ID 903 100010434 under the agreement LCF/PR/PR15/51100007). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Simheuristics es_ES
dc.subject Vehicle routing problem es_ES
dc.subject Petri nets es_ES
dc.subject Correlated demands es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2020.114240 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Agencia Estatal de Investigación//RED2018-102642-T//Spanish Network in Intelligent and Sustainable Transportation . Spanish Ministry of Science, Innovation, and Universities/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C22/ES/MODELOS SOSTENIBLES Y ANALITICA DEL TRASPORTE EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//2019-I-ES01-KA103-062602/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundación Caja Navarra//LCF%2FPR%2FPR15%2F51100007//CAN2019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Latorre-Biel, JI.; Ferone, D.; Juan, AA.; Faulin, J. (2021). Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands. Expert Systems with Applications. 168:1-11. https://doi.org/10.1016/j.eswa.2020.114240 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2020.114240 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 168 es_ES
dc.relation.pasarela S\500825 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Fundación Caja Navarra es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem