Latorre-Biel, JI.; Ferone, D.; Juan, AA.; Faulin, J. (2021). Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands. Expert Systems with Applications. 168:1-11. https://doi.org/10.1016/j.eswa.2020.114240
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199508
Título:
|
Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands
|
Autor:
|
Latorre-Biel, Juan I.
Ferone, Daniele
Juan, Angel A.
Faulin, Javier
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
|
Fecha difusión:
|
|
Resumen:
|
[EN] This paper analyzes a stochastic version of the vehicle routing problem in which customers' demands are not only stochastic but also correlated. In order to solve this stochastic and correlated optimization problem, ...[+]
[EN] This paper analyzes a stochastic version of the vehicle routing problem in which customers' demands are not only stochastic but also correlated. In order to solve this stochastic and correlated optimization problem, a simheuristic approach is combined with an adaptive demand predictor. This predictor is based on the use of machine learning methods and Petri nets. The information on real demands, provided by the vehicles as they visit the nodes of the logistic network, allows for a real-time forecast of the demand, as well as for an updated estimate of the correlation between them. A constrained prediction is provided by our hybrid algorithm, which is able to forecast an increase of 50% in the mean value of the demands of all nodes. With a very limited amount of information and reduced computational requirements, our algorithm provides a forecast with a high degree of reliability and a balanced capacity to reject false positives as well as false negatives. To illustrate its effectiveness, the methodology is applied to a wide range of benchmarks. The results show the benefits of applying this methodology in a context of correlated variation of the demands.
[-]
|
Palabras clave:
|
Simheuristics
,
Vehicle routing problem
,
Petri nets
,
Correlated demands
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Fuente:
|
Expert Systems with Applications. (issn:
0957-4174
)
|
DOI:
|
10.1016/j.eswa.2020.114240
|
Editorial:
|
Elsevier
|
Versión del editor:
|
https://doi.org/10.1016/j.eswa.2020.114240
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/
info:eu-repo/grantAgreement/Agencia Estatal de Investigación//RED2018-102642-T//Spanish Network in Intelligent and Sustainable Transportation . Spanish Ministry of Science, Innovation, and Universities/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C22/ES/MODELOS SOSTENIBLES Y ANALITICA DEL TRASPORTE EN CIUDADES INTELIGENTES/
info:eu-repo/grantAgreement/EC//2019-I-ES01-KA103-062602/
info:eu-repo/grantAgreement/Fundación Caja Navarra//LCF%2FPR%2FPR15%2F51100007//CAN2019/
|
Agradecimientos:
|
This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21/C22, RED2018-102642-T) and the SEPIE Erasmus + Program, Spain (2019I-ES01-KA103-062602). We also ...[+]
This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21/C22, RED2018-102642-T) and the SEPIE Erasmus + Program, Spain (2019I-ES01-KA103-062602). We also want to acknowledge the support received from the CAN Foundation in Navarre, Spain (Grant ID 903 100010434 under the agreement LCF/PR/PR15/51100007).
[-]
|
Tipo:
|
Artículo
|