- -

Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wolf, Mark Henning es_ES
dc.contributor.author Gil-Castell, Óscar es_ES
dc.contributor.author Cea, J. es_ES
dc.contributor.author Carrasco, J. C. es_ES
dc.contributor.author Ribes-Greus, María Desamparados es_ES
dc.date.accessioned 2023-11-10T19:04:55Z
dc.date.available 2023-11-10T19:04:55Z
dc.date.issued 2022 es_ES
dc.identifier.issn 1566-2543 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199516
dc.description.abstract [EN] In this study, bionanocomposite films based on poly(lactide) (PLA) plasticised with poly(ethylene glycol) (PEG) (7.5 wt%) and reinforced with various contents of nanofibrillated cellulose (NFC) (1, 3, 5 wt%) were prepared. The hydrothermal degradation was investigated through immersion in several aqueous environments at temperatures of 8, 23, 58, and 70 °C as a function of time (7, 15, 30, 60, 90 days). The effect of water immersion on the physicochemical properties of the materials was assessed by monitoring the changes in the morphology, thermo-oxidative stability, thermal properties, and molar mass through field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). The hydrothermal degradation behaviour was not critically affected regardless of the nanofibrillated cellulose content. All the materials revealed certain integrity towards water immersion and hydrolysis effects at low temperatures (8 and 23 °C). The low hydrothermal degradation may be an advantage for using these PLA biocomposites in contact with water at ambient temperatures and limited exposure times. On the other hand, immersion in water at higher temperatures above the glass transition (58 and 70 °C), leads to a drastic deterioration of the properties of these PLA-based materials, in particular to the reduction of the molar mass and the disintegration into small pieces. This hydrothermal degradation behaviour can be considered a feasible option for the waste management of PLA/PEG/NFC bionanocomposites by deposition in hot aqueous environments. es_ES
dc.description.sponsorship This research was funded by Generalitat Valenciana (Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital), as a part of the DEFIANCE research project CIPROM/2021/039 through the PRO-METEO funding program. Generalitat Valenciana is also thanked for the post-doctoral contract of O. Gil-Castell (APOSTD/2020/155). The Innovation Fund for Competitiveness of the Chilean Economic Development Agency (CORFO) is acknowledged for the financial support through the project 13CEI2-21839. Funding for open access charge is recognised to CRUE-Universitat Politecnica de Valencia-thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Polymers and the Environment es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Poly(lactide) (PLA) es_ES
dc.subject Poly(ethylene glycol) (PEG) es_ES
dc.subject Nanofibrillated cellulose (NFC) es_ES
dc.subject Bionanocomposites es_ES
dc.subject Hydrothermal degradation es_ES
dc.subject Water immersion es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10924-022-02711-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CORPORACION DE FOMENTO DE LA PRODUCCION, CORFO//LEITAT. 13CEI2-21839//CENTRO DE EXCELENCIA EN NANOFIBRAS LEITAT CHILE (CEN LEITAT-CHILE)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2020%2F155//CONTRATO POSDOCTORAL GVA-GIL CASTELL. PROYECTO: POLIELECTROLITOS FUNCIONALIZADOS PARA PILAS DE COMBUSTIBLE DE METANOL EN SISTEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//IDIFEDER%2F2021%2F039//ANALISIS Y OPTIMIZACION MULTI-ESCALA DE LA ARQUITECTURA DE VEHICULOS DE PILA DE COMBUSTIBLE DE HIDROGENO PARA PROMOVER LA DESCARBONIZACION DEL SECTOR TRANSPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Wolf, MH.; Gil-Castell, Ó.; Cea, J.; Carrasco, JC.; Ribes-Greus, MD. (2022). Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments. Journal of Polymers and the Environment. 31:2055-2072. https://doi.org/10.1007/s10924-022-02711-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10924-022-02711-y es_ES
dc.description.upvformatpinicio 2055 es_ES
dc.description.upvformatpfin 2072 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.relation.pasarela S\479488 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder CORPORACION DE FOMENTO DE LA PRODUCCION, CORFO es_ES
dc.description.references Shah S, Matkawala F, Garg S et al (2020) Emerging trend of bio-plastics and its impact on society. Biotechnol J Int 24:1–10. https://doi.org/10.9734/bji/2020/v24i430107 es_ES
dc.description.references Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W es_ES
dc.description.references Winkworth-Smith C, Foster TJ (2013) General overview of biopolymers. Structure, properties, and applications. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 7–36 es_ES
dc.description.references Ray SS, Okamoto M (2003) Biodegradable polylactide and Its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840 es_ES
dc.description.references Matuana LM (2008) Solid state microcellular foamed poly(lactic acid): morphology and property characterization. Bioresour Technol 99:3643–3650. https://doi.org/10.1016/j.biortech.2007.07.062 es_ES
dc.description.references Verma D, Fortunati E (2019) Biobased and biodegradable plastics. Handb Ecomater 4:2955–2976. https://doi.org/10.1007/978-3-319-68255-6_103 es_ES
dc.description.references Gil-Castell O, Badia JD, Ingles-Mascaros S et al (2018) Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost. Polym Degrad Stab 158:40–51. https://doi.org/10.1016/j.polymdegradstab.2018.10.017 es_ES
dc.description.references Zubrowska A, Piorkowska E, Bojda J (2018) Novel tough crystalline blends of polylactide with ethylene glycol derivative of POSS. J Polym Environ 26:145–151. https://doi.org/10.1007/S10924-016-0920-2/TABLES/2 es_ES
dc.description.references Brüster B, Addiego F, Hassouna F et al (2016) Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: multi-scale analysis and underlying mechanisms. Polym Degrad Stab 131:132–144. https://doi.org/10.1016/j.polymdegradstab.2016.07.017 es_ES
dc.description.references Ding WD, Chang E, Jahani D, et al (2016) Development Of PLA/Cellulosic fibre composite foams using injection molding: foaming and mechanical properties. Annual Technical Conference—ANTEC, conference proceedings 83:1783–1787 es_ES
dc.description.references Ghalia MA, Dahman Y (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res 24:74. https://doi.org/10.1007/s10965-017-1227-2 es_ES
dc.description.references Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci 52:108–116. https://doi.org/10.1002/pen.22052 es_ES
dc.description.references Pascual-Jose B, Badia JD, Múgica A et al (2021) Analysis of plasticization and reprocessing effects on the segmental cooperativity of polylactide by dielectric thermal spectroscopy. Polymer (Guildf) 223:123701. https://doi.org/10.1016/J.POLYMER.2021.123701 es_ES
dc.description.references Li FJ, Liang JZ, Zhang SD, Zhu B (2015) Tensile properties of polylactide/poly(ethylene glycol) blends. J Polym Environ 23:407–415. https://doi.org/10.1007/S10924-015-0718-7/FIGURES/11 es_ES
dc.description.references Jayanth D, Kumar PS, Nayak GC et al (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26:838–865. https://doi.org/10.1007/s10924-017-0985-6 es_ES
dc.description.references Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725. https://doi.org/10.1007/S10924-011-0320-6/FIGURES/12 es_ES
dc.description.references Mazur KE, Borucka A, Kaczor P et al (2022) Mechanical, thermal and microstructural characteristic of 3D printed polylactide composites with natural fibers: wood, bamboo and cork. J Polym Environ 30:2341–2354. https://doi.org/10.1007/S10924-021-02356-3/FIGURES/7 es_ES
dc.description.references Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192. https://doi.org/10.1016/j.compscitech.2009.02.022 es_ES
dc.description.references Mao J, Tang Y, Zhao R et al (2019) Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film. J Polym Environ 27:728–738. https://doi.org/10.1007/s10924-019-01382-6 es_ES
dc.description.references de Souza AG, Barbosa RFS, Rosa DS (2020) Nanocellulose from industrial and agricultural waste for further use in PLA composites. J Polym Environ 28:1851–1868. https://doi.org/10.1007/S10924-020-01731-W/FIGURES/5 es_ES
dc.description.references Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043 es_ES
dc.description.references Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768. https://doi.org/10.1016/j.polymertesting.2013.03.016 es_ES
dc.description.references Arrieta M, Samper M, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008. https://doi.org/10.3390/ma10091008 es_ES
dc.description.references Gan I, Chow WS (2018) Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17:150–161. https://doi.org/10.1016/j.fpsl.2018.06.012 es_ES
dc.description.references Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1:1117749. https://doi.org/10.1080/23311932.2015.1117749 es_ES
dc.description.references Vasile C, Rapa M, Stefan M et al (2017) New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym Lett 11:531–544. https://doi.org/10.3144/expresspolymlett.2017.51 es_ES
dc.description.references Sepúlveda FA, Rivera F, Loyo C et al (2022) Poly (lactic acid)/D-limonene/ZnO bio-nanocomposites with antimicrobial properties. J Appl Polym Sci 139:51542. https://doi.org/10.1002/APP.51542 es_ES
dc.description.references Bano K, Pandey R (2018) New advancements of bioplastics in medical applications. Int J Pharm Sci Res 9:402. https://doi.org/10.13040/IJPSR.0975-8232.9 es_ES
dc.description.references Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–1626. https://doi.org/10.1111/jam.14290 es_ES
dc.description.references Morozov AG, Razborov DA, Egiazaryan TA et al (2020) In Vitro study of degradation behavior, cytotoxicity, and cell adhesion of the atactic polylactic acid for biomedical purposes. J Polym Environ 28:2652–2660. https://doi.org/10.1007/S10924-020-01803-X/FIGURES/8 es_ES
dc.description.references Knoch S, Pelletier F, Larose M et al (2020) Surface modification of PLA nets intended for agricultural applications. Colloids Surf A Physicochem Eng Asp 598:124787. https://doi.org/10.1016/j.colsurfa.2020.124787 es_ES
dc.description.references Rychter P, Lewicka K, Rogacz D (2019) Environmental usefulness of PLA/PEG blends for controlled-release systems of soil-applied herbicides. J Appl Polym Sci 136:47856. https://doi.org/10.1002/app.47856 es_ES
dc.description.references Sevostyanov MA, Kaplan MA, Nasakina EO et al (2020) Development of a biodegradable polymer based on high-molecular-weight polylactide for medicine and agriculture: mechanical properties and biocompatibility. Dokl Chem 490:36–39. https://doi.org/10.1134/S0012500820020044 es_ES
dc.description.references Vink ETH, Rábago KR, Glassner DA et al (2004) The sustainability of Natureworks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551–564 es_ES
dc.description.references Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419. https://doi.org/10.1016/S0141-3910(02)00372-5 es_ES
dc.description.references Zhou J, Yu J, Bai D et al (2021) AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron 32:6080–6093. https://doi.org/10.1007/s10854-021-05327-5 es_ES
dc.description.references Arjmandi R, Hassan A, Zakaria Z (2017) Polylactic acid green nanocomposites for automotive applications. In: Jawaid M, Salit MS, Alothman OY (eds) Green energy and technology. Springer International Publishing, Cham, pp 193–208 es_ES
dc.description.references Hu RH, Jang MH, Kim YJ et al (2010) Fully degradable jute fiber reinforced polylactide composites applicable to car interior panel. Adv Mat Res 123–125:1151–1154. https://doi.org/10.4028/www.scientific.net/AMR.123-125.1151 es_ES
dc.description.references Notta-Cuvier D, Odent J, Delille R et al (2014) Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007 es_ES
dc.description.references Badia JD, Santonja-Blasco L, Martínez-Felipe A, Ribes-Greus A (2012) Hygrothermal ageing of reprocessed polylactide. Polym Degrad Stab 97:1881–1890. https://doi.org/10.1016/j.polymdegradstab.2012.06.001 es_ES
dc.description.references Gil-Castell O, Badia JD, Kittikorn T et al (2014) Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and physico-chemical performance. Polym Degrad Stab 108:212–222. https://doi.org/10.1016/j.polymdegradstab.2014.06.010 es_ES
dc.description.references Gil-Castell O, Badia JD, Kittikorn T et al (2016) Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polym Degrad Stab 132:87–96. https://doi.org/10.1016/j.polymdegradstab.2016.03.038 es_ES
dc.description.references Badia JD, Monreal L, Sáenz de Juano-Arbona V et al (2014) Dielectric spectroscopy of reprocessed polylactide. Polym Degrad Stab 107:21–27. https://doi.org/10.1016/j.polymdegradstab.2014.04.023 es_ES
dc.description.references Chassenieux C, Durand D, Jyotishkumar P, Thomas S (2014) Biopolymers state of the art, new challenges, and opportunities. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 1–6 es_ES
dc.description.references Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019 es_ES
dc.description.references Leu YY, Chow WS (2011) Kinetics of water absorption and thermal properties of poly(lactic acid)/organomontmorillonite/poly(ethylene glycol) nanocomposites. J Vinyl Add Tech 17:40–47. https://doi.org/10.1002/vnl.20259 es_ES
dc.description.references Ozkoc G, Kemaloglu S (2009) Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J Appl Polym Sci 114:2481–2487. https://doi.org/10.1002/app.30772 es_ES
dc.description.references Norazlina H, Hadi AA, Qurni AU et al (2019) Effects of multi-walled carbon nanotubes (MWCNTs) on the degradation behavior of plasticized PLA nanocomposites. Polym Bull 76:1453–1469. https://doi.org/10.1007/s00289-018-2454-3 es_ES
dc.description.references Berthé V, Ferry L, Bénézet JC, Bergeret A (2010) Ageing of different biodegradable polyesters blends mechanical and hygrothermal behavior. Polym Degrad Stab 95:262–269. https://doi.org/10.1016/j.polymdegradstab.2009.11.008 es_ES
dc.description.references (2008) ISO 62:2008. Plastics - Determination of water absorption es_ES
dc.description.references ASTM International (2018) ASTM D570-98, Standard Test Method for Water Absorption of Plastics es_ES
dc.description.references Greene JP (2014) Sustainable plastic products. In: Greene JP (ed) Sustainable plastics. John Wiley & Sons Inc, New York, pp 145–186 es_ES
dc.description.references Gil-Castell O, Andres-Puche R, Dominguez E et al (2020) Influence of substrate and temperature on the biodegradation of polyester-based materials: polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases. Polym Degrad Stab 180:109288. https://doi.org/10.1016/j.polymdegradstab.2020.109288 es_ES
dc.description.references ASTM International (2004) ASTM D6400-04, Standard Specification for Compostable Plastics es_ES
dc.description.references ASTM International (2011) ASTM D5338-11, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions es_ES
dc.description.references (2010) DIN EN 13432:2000-12, Packaging Requirements for Packaging Recoverable through Composting and Biodegradation Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging es_ES
dc.description.references (2018) ISO 14855-2:2018, Determination of the Ultimate Aerobic Biodegradability of plastic materials under Controlled Composting Conditions es_ES
dc.description.references Rodrigues Filho G, Monteiro DS, da Meireles CS et al (2008) Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr Polym 73:74–82. https://doi.org/10.1016/j.carbpol.2007.11.010 es_ES
dc.description.references Albornoz-Palma G, Betancourt F, Mendonça RT et al (2020) Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115588 es_ES
dc.description.references Yetiş F, Liu X, Sampson WW, Gong RH (2020) Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid. Eur Polym J 134:109803. https://doi.org/10.1016/J.EURPOLYMJ.2020.109803 es_ES
dc.description.references Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J Appl Polym Sci 126:E449–E458. https://doi.org/10.1002/APP.36787 es_ES
dc.description.references ASTM International (2014) ASTM D638-14, Standard Test Method for Tensile Properties of Plastics es_ES
dc.description.references (2008) EN-ISO 291:2008 Plastics - Standard atmoshperes for conditioning and testing es_ES
dc.description.references (2014) ISO 11358-1:2014 Plastics - Thermogravimetry (TG) of polymers - Part1: General principles es_ES
dc.description.references Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere 251:980–990. https://doi.org/10.1007/BF01498927 es_ES
dc.description.references Lauritzen Jr JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand A Phys Chem 64A:73. https://doi.org/10.6028/JRES.064A.007 es_ES
dc.description.references Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer (Guildf) 24:175–178. https://doi.org/10.1016/0032-3861(83)90129-5 es_ES
dc.description.references Ndazi BS, Karlsson S (2011) Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym Lett 5:119–131. https://doi.org/10.3144/expresspolymlett.2011.13 es_ES
dc.description.references Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly(lactic acid) biocomposites. Polym Degrad Stab 94:1151–1162. https://doi.org/10.1016/j.polymdegradstab.2009.03.025 es_ES
dc.description.references Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500. https://doi.org/10.1016/j.polymdegradstab.2005.04.006 es_ES
dc.description.references Hakkarainen M, Albertsson A-C, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52:283–291. https://doi.org/10.1016/0141-3910(96)00009-2 es_ES
dc.description.references Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16:305–311. https://doi.org/10.1016/0142-9612(95)93258-F es_ES
dc.description.references Zhu J, Abeykoon C, Karim N (2021) Investigation into the effects of fillers in polymer processing. Int J Lightweight Mater Manuf 4:370–382. https://doi.org/10.1016/j.ijlmm.2021.04.003 es_ES
dc.description.references Beltrán FR, Arrieta MP, Gaspar G et al (2020) Effect of Iignocellulosic nanoparticles extracted from yerba mate (Ilex paraguariensis) on the structural, thermal, optical and barrier properties of mechanically recycled poly(lactic acid). Polymers (Basel). https://doi.org/10.3390/POLYM12081690 es_ES
dc.description.references Sambha’a EL, Lallam A, Jada A (2010) Effect of hydrothermal polylactic acid degradation on polymer molecular weight and surface properties. J Polym Environ 18:532–538. https://doi.org/10.1007/s10924-010-0251-7 es_ES
dc.description.references Fukushima K, Tabuani D, Dottori M et al (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129. https://doi.org/10.1016/j.polymdegradstab.2011.09.018 es_ES
dc.description.references Kamau-Devers K, Kortum Z, Miller SA (2019) Hydrothermal aging of bio-based poly(lactic acid) (PLA) wood polymer composites: studies on sorption behavior, morphology, and heat conductance. Constr Build Mater 214:290–302. https://doi.org/10.1016/j.conbuildmat.2019.04.098 es_ES
dc.description.references Atalay SE, Bezci B, Özdemir B et al (2021) Thermal and environmentally induced degradation behaviors of amorphous and semicrystalline PLAs through rheological analysis. J Polym Environ 29:3412–3426. https://doi.org/10.1007/s10924-021-02128-z es_ES
dc.description.references Ahmad Sawpan M, Islam MR, Beg MDH, Pickering K (2019) Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. J Polym Environ 27:942–955. https://doi.org/10.1007/s10924-019-01405-2 es_ES
dc.description.references Göpferich A, Langer R (1993) The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J Polym Sci A Polym Chem 31:2445–2458. https://doi.org/10.1002/pola.1993.080311004 es_ES
dc.description.references Mathiowitz E, Jacob J, Pekarek K, Chickering D (1993) Morphological characterization of bioerodible polymers. 3. characterization of the erosion and intact zones in polyanhydrides using scanning electron microscopy. Macromolecules 26:6756–6765. https://doi.org/10.1021/ma00077a010 es_ES
dc.description.references Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450. https://doi.org/10.1016/j.fpsl.2019.100450 es_ES
dc.description.references Auras R, Lim L-T, Selke S, Tsuji H (2010) Poly(Lactic Acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons Inc, Hoboken es_ES
dc.description.references Badia JD, Gil-Castell O, Ribes-Greus A (2017) Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 137:35–57. https://doi.org/10.1016/j.polymdegradstab.2017.01.002 es_ES
dc.description.references Martin O (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer (Guildf) 42:6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6 es_ES
dc.description.references Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci B Polym Phys 42:25–32. https://doi.org/10.1002/polb.10674 es_ES
dc.description.references Santonja-Blasco L, Moriana R, Badía JD, Ribes-Greus A (2010) Thermal analysis applied to the characterization of degradation in soil of polylactide: I. Calorimetric and viscoelastic analyses. Polym Degrad Stab 95:2185–2191. https://doi.org/10.1016/j.polymdegradstab.2010.08.005 es_ES
dc.description.references Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer (Guildf) 37:5849–5857. https://doi.org/10.1016/S0032-3861(96)00455-7 es_ES
dc.description.references Jiang N, Yu T, Li Y et al (2019) Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos Sci Technol 173:15–23. https://doi.org/10.1016/j.compscitech.2019.01.018 es_ES
dc.description.references Raisipour-Shirazi A, Ahmadi Z, Garmabi H (2018) Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iran Polym J (English Edition) 27:785–794. https://doi.org/10.1007/s13726-018-0651-4 es_ES
dc.description.references Almasi H, Ghanbarzadeh B, Dehghannya J et al (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Packag Shelf Life 5:21–31. https://doi.org/10.1016/j.fpsl.2015.04.003 es_ES
dc.description.references Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromol 14:1541–1546. https://doi.org/10.1021/bm400178m es_ES
dc.description.references Perić M, Putz R, Paulik C (2019) Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid). Eur Polym J 114:426–433. https://doi.org/10.1016/j.eurpolymj.2019.03.014 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem