Mostrar el registro sencillo del ítem
dc.contributor.author | Wolf, Mark Henning | es_ES |
dc.contributor.author | Gil-Castell, Óscar | es_ES |
dc.contributor.author | Cea, J. | es_ES |
dc.contributor.author | Carrasco, J. C. | es_ES |
dc.contributor.author | Ribes-Greus, María Desamparados | es_ES |
dc.date.accessioned | 2023-11-10T19:04:55Z | |
dc.date.available | 2023-11-10T19:04:55Z | |
dc.date.issued | 2022 | es_ES |
dc.identifier.issn | 1566-2543 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/199516 | |
dc.description.abstract | [EN] In this study, bionanocomposite films based on poly(lactide) (PLA) plasticised with poly(ethylene glycol) (PEG) (7.5 wt%) and reinforced with various contents of nanofibrillated cellulose (NFC) (1, 3, 5 wt%) were prepared. The hydrothermal degradation was investigated through immersion in several aqueous environments at temperatures of 8, 23, 58, and 70 °C as a function of time (7, 15, 30, 60, 90 days). The effect of water immersion on the physicochemical properties of the materials was assessed by monitoring the changes in the morphology, thermo-oxidative stability, thermal properties, and molar mass through field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). The hydrothermal degradation behaviour was not critically affected regardless of the nanofibrillated cellulose content. All the materials revealed certain integrity towards water immersion and hydrolysis effects at low temperatures (8 and 23 °C). The low hydrothermal degradation may be an advantage for using these PLA biocomposites in contact with water at ambient temperatures and limited exposure times. On the other hand, immersion in water at higher temperatures above the glass transition (58 and 70 °C), leads to a drastic deterioration of the properties of these PLA-based materials, in particular to the reduction of the molar mass and the disintegration into small pieces. This hydrothermal degradation behaviour can be considered a feasible option for the waste management of PLA/PEG/NFC bionanocomposites by deposition in hot aqueous environments. | es_ES |
dc.description.sponsorship | This research was funded by Generalitat Valenciana (Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital), as a part of the DEFIANCE research project CIPROM/2021/039 through the PRO-METEO funding program. Generalitat Valenciana is also thanked for the post-doctoral contract of O. Gil-Castell (APOSTD/2020/155). The Innovation Fund for Competitiveness of the Chilean Economic Development Agency (CORFO) is acknowledged for the financial support through the project 13CEI2-21839. Funding for open access charge is recognised to CRUE-Universitat Politecnica de Valencia-thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Polymers and the Environment | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Poly(lactide) (PLA) | es_ES |
dc.subject | Poly(ethylene glycol) (PEG) | es_ES |
dc.subject | Nanofibrillated cellulose (NFC) | es_ES |
dc.subject | Bionanocomposites | es_ES |
dc.subject | Hydrothermal degradation | es_ES |
dc.subject | Water immersion | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10924-022-02711-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CORPORACION DE FOMENTO DE LA PRODUCCION, CORFO//LEITAT. 13CEI2-21839//CENTRO DE EXCELENCIA EN NANOFIBRAS LEITAT CHILE (CEN LEITAT-CHILE)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2020%2F155//CONTRATO POSDOCTORAL GVA-GIL CASTELL. PROYECTO: POLIELECTROLITOS FUNCIONALIZADOS PARA PILAS DE COMBUSTIBLE DE METANOL EN SISTEMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//IDIFEDER%2F2021%2F039//ANALISIS Y OPTIMIZACION MULTI-ESCALA DE LA ARQUITECTURA DE VEHICULOS DE PILA DE COMBUSTIBLE DE HIDROGENO PARA PROMOVER LA DESCARBONIZACION DEL SECTOR TRANSPORTE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Wolf, MH.; Gil-Castell, Ó.; Cea, J.; Carrasco, JC.; Ribes-Greus, MD. (2022). Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments. Journal of Polymers and the Environment. 31:2055-2072. https://doi.org/10.1007/s10924-022-02711-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10924-022-02711-y | es_ES |
dc.description.upvformatpinicio | 2055 | es_ES |
dc.description.upvformatpfin | 2072 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.relation.pasarela | S\479488 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | CORPORACION DE FOMENTO DE LA PRODUCCION, CORFO | es_ES |
dc.description.references | Shah S, Matkawala F, Garg S et al (2020) Emerging trend of bio-plastics and its impact on society. Biotechnol J Int 24:1–10. https://doi.org/10.9734/bji/2020/v24i430107 | es_ES |
dc.description.references | Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W | es_ES |
dc.description.references | Winkworth-Smith C, Foster TJ (2013) General overview of biopolymers. Structure, properties, and applications. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 7–36 | es_ES |
dc.description.references | Ray SS, Okamoto M (2003) Biodegradable polylactide and Its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840 | es_ES |
dc.description.references | Matuana LM (2008) Solid state microcellular foamed poly(lactic acid): morphology and property characterization. Bioresour Technol 99:3643–3650. https://doi.org/10.1016/j.biortech.2007.07.062 | es_ES |
dc.description.references | Verma D, Fortunati E (2019) Biobased and biodegradable plastics. Handb Ecomater 4:2955–2976. https://doi.org/10.1007/978-3-319-68255-6_103 | es_ES |
dc.description.references | Gil-Castell O, Badia JD, Ingles-Mascaros S et al (2018) Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost. Polym Degrad Stab 158:40–51. https://doi.org/10.1016/j.polymdegradstab.2018.10.017 | es_ES |
dc.description.references | Zubrowska A, Piorkowska E, Bojda J (2018) Novel tough crystalline blends of polylactide with ethylene glycol derivative of POSS. J Polym Environ 26:145–151. https://doi.org/10.1007/S10924-016-0920-2/TABLES/2 | es_ES |
dc.description.references | Brüster B, Addiego F, Hassouna F et al (2016) Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: multi-scale analysis and underlying mechanisms. Polym Degrad Stab 131:132–144. https://doi.org/10.1016/j.polymdegradstab.2016.07.017 | es_ES |
dc.description.references | Ding WD, Chang E, Jahani D, et al (2016) Development Of PLA/Cellulosic fibre composite foams using injection molding: foaming and mechanical properties. Annual Technical Conference—ANTEC, conference proceedings 83:1783–1787 | es_ES |
dc.description.references | Ghalia MA, Dahman Y (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res 24:74. https://doi.org/10.1007/s10965-017-1227-2 | es_ES |
dc.description.references | Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci 52:108–116. https://doi.org/10.1002/pen.22052 | es_ES |
dc.description.references | Pascual-Jose B, Badia JD, Múgica A et al (2021) Analysis of plasticization and reprocessing effects on the segmental cooperativity of polylactide by dielectric thermal spectroscopy. Polymer (Guildf) 223:123701. https://doi.org/10.1016/J.POLYMER.2021.123701 | es_ES |
dc.description.references | Li FJ, Liang JZ, Zhang SD, Zhu B (2015) Tensile properties of polylactide/poly(ethylene glycol) blends. J Polym Environ 23:407–415. https://doi.org/10.1007/S10924-015-0718-7/FIGURES/11 | es_ES |
dc.description.references | Jayanth D, Kumar PS, Nayak GC et al (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26:838–865. https://doi.org/10.1007/s10924-017-0985-6 | es_ES |
dc.description.references | Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725. https://doi.org/10.1007/S10924-011-0320-6/FIGURES/12 | es_ES |
dc.description.references | Mazur KE, Borucka A, Kaczor P et al (2022) Mechanical, thermal and microstructural characteristic of 3D printed polylactide composites with natural fibers: wood, bamboo and cork. J Polym Environ 30:2341–2354. https://doi.org/10.1007/S10924-021-02356-3/FIGURES/7 | es_ES |
dc.description.references | Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192. https://doi.org/10.1016/j.compscitech.2009.02.022 | es_ES |
dc.description.references | Mao J, Tang Y, Zhao R et al (2019) Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film. J Polym Environ 27:728–738. https://doi.org/10.1007/s10924-019-01382-6 | es_ES |
dc.description.references | de Souza AG, Barbosa RFS, Rosa DS (2020) Nanocellulose from industrial and agricultural waste for further use in PLA composites. J Polym Environ 28:1851–1868. https://doi.org/10.1007/S10924-020-01731-W/FIGURES/5 | es_ES |
dc.description.references | Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043 | es_ES |
dc.description.references | Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768. https://doi.org/10.1016/j.polymertesting.2013.03.016 | es_ES |
dc.description.references | Arrieta M, Samper M, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008. https://doi.org/10.3390/ma10091008 | es_ES |
dc.description.references | Gan I, Chow WS (2018) Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17:150–161. https://doi.org/10.1016/j.fpsl.2018.06.012 | es_ES |
dc.description.references | Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1:1117749. https://doi.org/10.1080/23311932.2015.1117749 | es_ES |
dc.description.references | Vasile C, Rapa M, Stefan M et al (2017) New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym Lett 11:531–544. https://doi.org/10.3144/expresspolymlett.2017.51 | es_ES |
dc.description.references | Sepúlveda FA, Rivera F, Loyo C et al (2022) Poly (lactic acid)/D-limonene/ZnO bio-nanocomposites with antimicrobial properties. J Appl Polym Sci 139:51542. https://doi.org/10.1002/APP.51542 | es_ES |
dc.description.references | Bano K, Pandey R (2018) New advancements of bioplastics in medical applications. Int J Pharm Sci Res 9:402. https://doi.org/10.13040/IJPSR.0975-8232.9 | es_ES |
dc.description.references | Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–1626. https://doi.org/10.1111/jam.14290 | es_ES |
dc.description.references | Morozov AG, Razborov DA, Egiazaryan TA et al (2020) In Vitro study of degradation behavior, cytotoxicity, and cell adhesion of the atactic polylactic acid for biomedical purposes. J Polym Environ 28:2652–2660. https://doi.org/10.1007/S10924-020-01803-X/FIGURES/8 | es_ES |
dc.description.references | Knoch S, Pelletier F, Larose M et al (2020) Surface modification of PLA nets intended for agricultural applications. Colloids Surf A Physicochem Eng Asp 598:124787. https://doi.org/10.1016/j.colsurfa.2020.124787 | es_ES |
dc.description.references | Rychter P, Lewicka K, Rogacz D (2019) Environmental usefulness of PLA/PEG blends for controlled-release systems of soil-applied herbicides. J Appl Polym Sci 136:47856. https://doi.org/10.1002/app.47856 | es_ES |
dc.description.references | Sevostyanov MA, Kaplan MA, Nasakina EO et al (2020) Development of a biodegradable polymer based on high-molecular-weight polylactide for medicine and agriculture: mechanical properties and biocompatibility. Dokl Chem 490:36–39. https://doi.org/10.1134/S0012500820020044 | es_ES |
dc.description.references | Vink ETH, Rábago KR, Glassner DA et al (2004) The sustainability of Natureworks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551–564 | es_ES |
dc.description.references | Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419. https://doi.org/10.1016/S0141-3910(02)00372-5 | es_ES |
dc.description.references | Zhou J, Yu J, Bai D et al (2021) AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron 32:6080–6093. https://doi.org/10.1007/s10854-021-05327-5 | es_ES |
dc.description.references | Arjmandi R, Hassan A, Zakaria Z (2017) Polylactic acid green nanocomposites for automotive applications. In: Jawaid M, Salit MS, Alothman OY (eds) Green energy and technology. Springer International Publishing, Cham, pp 193–208 | es_ES |
dc.description.references | Hu RH, Jang MH, Kim YJ et al (2010) Fully degradable jute fiber reinforced polylactide composites applicable to car interior panel. Adv Mat Res 123–125:1151–1154. https://doi.org/10.4028/www.scientific.net/AMR.123-125.1151 | es_ES |
dc.description.references | Notta-Cuvier D, Odent J, Delille R et al (2014) Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007 | es_ES |
dc.description.references | Badia JD, Santonja-Blasco L, Martínez-Felipe A, Ribes-Greus A (2012) Hygrothermal ageing of reprocessed polylactide. Polym Degrad Stab 97:1881–1890. https://doi.org/10.1016/j.polymdegradstab.2012.06.001 | es_ES |
dc.description.references | Gil-Castell O, Badia JD, Kittikorn T et al (2014) Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and physico-chemical performance. Polym Degrad Stab 108:212–222. https://doi.org/10.1016/j.polymdegradstab.2014.06.010 | es_ES |
dc.description.references | Gil-Castell O, Badia JD, Kittikorn T et al (2016) Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polym Degrad Stab 132:87–96. https://doi.org/10.1016/j.polymdegradstab.2016.03.038 | es_ES |
dc.description.references | Badia JD, Monreal L, Sáenz de Juano-Arbona V et al (2014) Dielectric spectroscopy of reprocessed polylactide. Polym Degrad Stab 107:21–27. https://doi.org/10.1016/j.polymdegradstab.2014.04.023 | es_ES |
dc.description.references | Chassenieux C, Durand D, Jyotishkumar P, Thomas S (2014) Biopolymers state of the art, new challenges, and opportunities. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 1–6 | es_ES |
dc.description.references | Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019 | es_ES |
dc.description.references | Leu YY, Chow WS (2011) Kinetics of water absorption and thermal properties of poly(lactic acid)/organomontmorillonite/poly(ethylene glycol) nanocomposites. J Vinyl Add Tech 17:40–47. https://doi.org/10.1002/vnl.20259 | es_ES |
dc.description.references | Ozkoc G, Kemaloglu S (2009) Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J Appl Polym Sci 114:2481–2487. https://doi.org/10.1002/app.30772 | es_ES |
dc.description.references | Norazlina H, Hadi AA, Qurni AU et al (2019) Effects of multi-walled carbon nanotubes (MWCNTs) on the degradation behavior of plasticized PLA nanocomposites. Polym Bull 76:1453–1469. https://doi.org/10.1007/s00289-018-2454-3 | es_ES |
dc.description.references | Berthé V, Ferry L, Bénézet JC, Bergeret A (2010) Ageing of different biodegradable polyesters blends mechanical and hygrothermal behavior. Polym Degrad Stab 95:262–269. https://doi.org/10.1016/j.polymdegradstab.2009.11.008 | es_ES |
dc.description.references | (2008) ISO 62:2008. Plastics - Determination of water absorption | es_ES |
dc.description.references | ASTM International (2018) ASTM D570-98, Standard Test Method for Water Absorption of Plastics | es_ES |
dc.description.references | Greene JP (2014) Sustainable plastic products. In: Greene JP (ed) Sustainable plastics. John Wiley & Sons Inc, New York, pp 145–186 | es_ES |
dc.description.references | Gil-Castell O, Andres-Puche R, Dominguez E et al (2020) Influence of substrate and temperature on the biodegradation of polyester-based materials: polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases. Polym Degrad Stab 180:109288. https://doi.org/10.1016/j.polymdegradstab.2020.109288 | es_ES |
dc.description.references | ASTM International (2004) ASTM D6400-04, Standard Specification for Compostable Plastics | es_ES |
dc.description.references | ASTM International (2011) ASTM D5338-11, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions | es_ES |
dc.description.references | (2010) DIN EN 13432:2000-12, Packaging Requirements for Packaging Recoverable through Composting and Biodegradation Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging | es_ES |
dc.description.references | (2018) ISO 14855-2:2018, Determination of the Ultimate Aerobic Biodegradability of plastic materials under Controlled Composting Conditions | es_ES |
dc.description.references | Rodrigues Filho G, Monteiro DS, da Meireles CS et al (2008) Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr Polym 73:74–82. https://doi.org/10.1016/j.carbpol.2007.11.010 | es_ES |
dc.description.references | Albornoz-Palma G, Betancourt F, Mendonça RT et al (2020) Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115588 | es_ES |
dc.description.references | Yetiş F, Liu X, Sampson WW, Gong RH (2020) Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid. Eur Polym J 134:109803. https://doi.org/10.1016/J.EURPOLYMJ.2020.109803 | es_ES |
dc.description.references | Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J Appl Polym Sci 126:E449–E458. https://doi.org/10.1002/APP.36787 | es_ES |
dc.description.references | ASTM International (2014) ASTM D638-14, Standard Test Method for Tensile Properties of Plastics | es_ES |
dc.description.references | (2008) EN-ISO 291:2008 Plastics - Standard atmoshperes for conditioning and testing | es_ES |
dc.description.references | (2014) ISO 11358-1:2014 Plastics - Thermogravimetry (TG) of polymers - Part1: General principles | es_ES |
dc.description.references | Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere 251:980–990. https://doi.org/10.1007/BF01498927 | es_ES |
dc.description.references | Lauritzen Jr JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand A Phys Chem 64A:73. https://doi.org/10.6028/JRES.064A.007 | es_ES |
dc.description.references | Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer (Guildf) 24:175–178. https://doi.org/10.1016/0032-3861(83)90129-5 | es_ES |
dc.description.references | Ndazi BS, Karlsson S (2011) Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym Lett 5:119–131. https://doi.org/10.3144/expresspolymlett.2011.13 | es_ES |
dc.description.references | Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly(lactic acid) biocomposites. Polym Degrad Stab 94:1151–1162. https://doi.org/10.1016/j.polymdegradstab.2009.03.025 | es_ES |
dc.description.references | Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500. https://doi.org/10.1016/j.polymdegradstab.2005.04.006 | es_ES |
dc.description.references | Hakkarainen M, Albertsson A-C, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52:283–291. https://doi.org/10.1016/0141-3910(96)00009-2 | es_ES |
dc.description.references | Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16:305–311. https://doi.org/10.1016/0142-9612(95)93258-F | es_ES |
dc.description.references | Zhu J, Abeykoon C, Karim N (2021) Investigation into the effects of fillers in polymer processing. Int J Lightweight Mater Manuf 4:370–382. https://doi.org/10.1016/j.ijlmm.2021.04.003 | es_ES |
dc.description.references | Beltrán FR, Arrieta MP, Gaspar G et al (2020) Effect of Iignocellulosic nanoparticles extracted from yerba mate (Ilex paraguariensis) on the structural, thermal, optical and barrier properties of mechanically recycled poly(lactic acid). Polymers (Basel). https://doi.org/10.3390/POLYM12081690 | es_ES |
dc.description.references | Sambha’a EL, Lallam A, Jada A (2010) Effect of hydrothermal polylactic acid degradation on polymer molecular weight and surface properties. J Polym Environ 18:532–538. https://doi.org/10.1007/s10924-010-0251-7 | es_ES |
dc.description.references | Fukushima K, Tabuani D, Dottori M et al (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129. https://doi.org/10.1016/j.polymdegradstab.2011.09.018 | es_ES |
dc.description.references | Kamau-Devers K, Kortum Z, Miller SA (2019) Hydrothermal aging of bio-based poly(lactic acid) (PLA) wood polymer composites: studies on sorption behavior, morphology, and heat conductance. Constr Build Mater 214:290–302. https://doi.org/10.1016/j.conbuildmat.2019.04.098 | es_ES |
dc.description.references | Atalay SE, Bezci B, Özdemir B et al (2021) Thermal and environmentally induced degradation behaviors of amorphous and semicrystalline PLAs through rheological analysis. J Polym Environ 29:3412–3426. https://doi.org/10.1007/s10924-021-02128-z | es_ES |
dc.description.references | Ahmad Sawpan M, Islam MR, Beg MDH, Pickering K (2019) Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. J Polym Environ 27:942–955. https://doi.org/10.1007/s10924-019-01405-2 | es_ES |
dc.description.references | Göpferich A, Langer R (1993) The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J Polym Sci A Polym Chem 31:2445–2458. https://doi.org/10.1002/pola.1993.080311004 | es_ES |
dc.description.references | Mathiowitz E, Jacob J, Pekarek K, Chickering D (1993) Morphological characterization of bioerodible polymers. 3. characterization of the erosion and intact zones in polyanhydrides using scanning electron microscopy. Macromolecules 26:6756–6765. https://doi.org/10.1021/ma00077a010 | es_ES |
dc.description.references | Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450. https://doi.org/10.1016/j.fpsl.2019.100450 | es_ES |
dc.description.references | Auras R, Lim L-T, Selke S, Tsuji H (2010) Poly(Lactic Acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons Inc, Hoboken | es_ES |
dc.description.references | Badia JD, Gil-Castell O, Ribes-Greus A (2017) Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 137:35–57. https://doi.org/10.1016/j.polymdegradstab.2017.01.002 | es_ES |
dc.description.references | Martin O (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer (Guildf) 42:6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6 | es_ES |
dc.description.references | Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci B Polym Phys 42:25–32. https://doi.org/10.1002/polb.10674 | es_ES |
dc.description.references | Santonja-Blasco L, Moriana R, Badía JD, Ribes-Greus A (2010) Thermal analysis applied to the characterization of degradation in soil of polylactide: I. Calorimetric and viscoelastic analyses. Polym Degrad Stab 95:2185–2191. https://doi.org/10.1016/j.polymdegradstab.2010.08.005 | es_ES |
dc.description.references | Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer (Guildf) 37:5849–5857. https://doi.org/10.1016/S0032-3861(96)00455-7 | es_ES |
dc.description.references | Jiang N, Yu T, Li Y et al (2019) Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos Sci Technol 173:15–23. https://doi.org/10.1016/j.compscitech.2019.01.018 | es_ES |
dc.description.references | Raisipour-Shirazi A, Ahmadi Z, Garmabi H (2018) Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iran Polym J (English Edition) 27:785–794. https://doi.org/10.1007/s13726-018-0651-4 | es_ES |
dc.description.references | Almasi H, Ghanbarzadeh B, Dehghannya J et al (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Packag Shelf Life 5:21–31. https://doi.org/10.1016/j.fpsl.2015.04.003 | es_ES |
dc.description.references | Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromol 14:1541–1546. https://doi.org/10.1021/bm400178m | es_ES |
dc.description.references | Perić M, Putz R, Paulik C (2019) Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid). Eur Polym J 114:426–433. https://doi.org/10.1016/j.eurpolymj.2019.03.014 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |