- -

Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments

Mostrar el registro completo del ítem

Wolf, MH.; Gil-Castell, Ó.; Cea, J.; Carrasco, JC.; Ribes-Greus, MD. (2022). Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments. Journal of Polymers and the Environment. 31:2055-2072. https://doi.org/10.1007/s10924-022-02711-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199516

Ficheros en el ítem

Metadatos del ítem

Título: Degradation of Plasticised Poly(lactide) Composites with Nanofibrillated Cellulose in Different Hydrothermal Environments
Autor: Wolf, Mark Henning Gil-Castell, Óscar Cea, J. Carrasco, J. C. Ribes-Greus, María Desamparados
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] In this study, bionanocomposite films based on poly(lactide) (PLA) plasticised with poly(ethylene glycol) (PEG) (7.5 wt%) and reinforced with various contents of nanofibrillated cellulose (NFC) (1, 3, 5 wt%) were ...[+]
Palabras clave: Poly(lactide) (PLA) , Poly(ethylene glycol) (PEG) , Nanofibrillated cellulose (NFC) , Bionanocomposites , Hydrothermal degradation , Water immersion
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Polymers and the Environment. (issn: 1566-2543 )
DOI: 10.1007/s10924-022-02711-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10924-022-02711-y
Código del Proyecto:
info:eu-repo/grantAgreement/CORPORACION DE FOMENTO DE LA PRODUCCION, CORFO//LEITAT. 13CEI2-21839//CENTRO DE EXCELENCIA EN NANOFIBRAS LEITAT CHILE (CEN LEITAT-CHILE)/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2020%2F155//CONTRATO POSDOCTORAL GVA-GIL CASTELL. PROYECTO: POLIELECTROLITOS FUNCIONALIZADOS PARA PILAS DE COMBUSTIBLE DE METANOL EN SISTEMAS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//IDIFEDER%2F2021%2F039//ANALISIS Y OPTIMIZACION MULTI-ESCALA DE LA ARQUITECTURA DE VEHICULOS DE PILA DE COMBUSTIBLE DE HIDROGENO PARA PROMOVER LA DESCARBONIZACION DEL SECTOR TRANSPORTE/
Agradecimientos:
This research was funded by Generalitat Valenciana (Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital), as a part of the DEFIANCE research project CIPROM/2021/039 through the PRO-METEO funding program. ...[+]
Tipo: Artículo

References

Shah S, Matkawala F, Garg S et al (2020) Emerging trend of bio-plastics and its impact on society. Biotechnol J Int 24:1–10. https://doi.org/10.9734/bji/2020/v24i430107

Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W

Winkworth-Smith C, Foster TJ (2013) General overview of biopolymers. Structure, properties, and applications. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 7–36 [+]
Shah S, Matkawala F, Garg S et al (2020) Emerging trend of bio-plastics and its impact on society. Biotechnol J Int 24:1–10. https://doi.org/10.9734/bji/2020/v24i430107

Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3c1::AID-MAME1%3e3.0.CO;2-W

Winkworth-Smith C, Foster TJ (2013) General overview of biopolymers. Structure, properties, and applications. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 7–36

Ray SS, Okamoto M (2003) Biodegradable polylactide and Its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840

Matuana LM (2008) Solid state microcellular foamed poly(lactic acid): morphology and property characterization. Bioresour Technol 99:3643–3650. https://doi.org/10.1016/j.biortech.2007.07.062

Verma D, Fortunati E (2019) Biobased and biodegradable plastics. Handb Ecomater 4:2955–2976. https://doi.org/10.1007/978-3-319-68255-6_103

Gil-Castell O, Badia JD, Ingles-Mascaros S et al (2018) Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost. Polym Degrad Stab 158:40–51. https://doi.org/10.1016/j.polymdegradstab.2018.10.017

Zubrowska A, Piorkowska E, Bojda J (2018) Novel tough crystalline blends of polylactide with ethylene glycol derivative of POSS. J Polym Environ 26:145–151. https://doi.org/10.1007/S10924-016-0920-2/TABLES/2

Brüster B, Addiego F, Hassouna F et al (2016) Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: multi-scale analysis and underlying mechanisms. Polym Degrad Stab 131:132–144. https://doi.org/10.1016/j.polymdegradstab.2016.07.017

Ding WD, Chang E, Jahani D, et al (2016) Development Of PLA/Cellulosic fibre composite foams using injection molding: foaming and mechanical properties. Annual Technical Conference—ANTEC, conference proceedings 83:1783–1787

Ghalia MA, Dahman Y (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res 24:74. https://doi.org/10.1007/s10965-017-1227-2

Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci 52:108–116. https://doi.org/10.1002/pen.22052

Pascual-Jose B, Badia JD, Múgica A et al (2021) Analysis of plasticization and reprocessing effects on the segmental cooperativity of polylactide by dielectric thermal spectroscopy. Polymer (Guildf) 223:123701. https://doi.org/10.1016/J.POLYMER.2021.123701

Li FJ, Liang JZ, Zhang SD, Zhu B (2015) Tensile properties of polylactide/poly(ethylene glycol) blends. J Polym Environ 23:407–415. https://doi.org/10.1007/S10924-015-0718-7/FIGURES/11

Jayanth D, Kumar PS, Nayak GC et al (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26:838–865. https://doi.org/10.1007/s10924-017-0985-6

Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725. https://doi.org/10.1007/S10924-011-0320-6/FIGURES/12

Mazur KE, Borucka A, Kaczor P et al (2022) Mechanical, thermal and microstructural characteristic of 3D printed polylactide composites with natural fibers: wood, bamboo and cork. J Polym Environ 30:2341–2354. https://doi.org/10.1007/S10924-021-02356-3/FIGURES/7

Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192. https://doi.org/10.1016/j.compscitech.2009.02.022

Mao J, Tang Y, Zhao R et al (2019) Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film. J Polym Environ 27:728–738. https://doi.org/10.1007/s10924-019-01382-6

de Souza AG, Barbosa RFS, Rosa DS (2020) Nanocellulose from industrial and agricultural waste for further use in PLA composites. J Polym Environ 28:1851–1868. https://doi.org/10.1007/S10924-020-01731-W/FIGURES/5

Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768. https://doi.org/10.1016/j.polymertesting.2013.03.016

Arrieta M, Samper M, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008. https://doi.org/10.3390/ma10091008

Gan I, Chow WS (2018) Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17:150–161. https://doi.org/10.1016/j.fpsl.2018.06.012

Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1:1117749. https://doi.org/10.1080/23311932.2015.1117749

Vasile C, Rapa M, Stefan M et al (2017) New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym Lett 11:531–544. https://doi.org/10.3144/expresspolymlett.2017.51

Sepúlveda FA, Rivera F, Loyo C et al (2022) Poly (lactic acid)/D-limonene/ZnO bio-nanocomposites with antimicrobial properties. J Appl Polym Sci 139:51542. https://doi.org/10.1002/APP.51542

Bano K, Pandey R (2018) New advancements of bioplastics in medical applications. Int J Pharm Sci Res 9:402. https://doi.org/10.13040/IJPSR.0975-8232.9

Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–1626. https://doi.org/10.1111/jam.14290

Morozov AG, Razborov DA, Egiazaryan TA et al (2020) In Vitro study of degradation behavior, cytotoxicity, and cell adhesion of the atactic polylactic acid for biomedical purposes. J Polym Environ 28:2652–2660. https://doi.org/10.1007/S10924-020-01803-X/FIGURES/8

Knoch S, Pelletier F, Larose M et al (2020) Surface modification of PLA nets intended for agricultural applications. Colloids Surf A Physicochem Eng Asp 598:124787. https://doi.org/10.1016/j.colsurfa.2020.124787

Rychter P, Lewicka K, Rogacz D (2019) Environmental usefulness of PLA/PEG blends for controlled-release systems of soil-applied herbicides. J Appl Polym Sci 136:47856. https://doi.org/10.1002/app.47856

Sevostyanov MA, Kaplan MA, Nasakina EO et al (2020) Development of a biodegradable polymer based on high-molecular-weight polylactide for medicine and agriculture: mechanical properties and biocompatibility. Dokl Chem 490:36–39. https://doi.org/10.1134/S0012500820020044

Vink ETH, Rábago KR, Glassner DA et al (2004) The sustainability of Natureworks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551–564

Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80:403–419. https://doi.org/10.1016/S0141-3910(02)00372-5

Zhou J, Yu J, Bai D et al (2021) AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron 32:6080–6093. https://doi.org/10.1007/s10854-021-05327-5

Arjmandi R, Hassan A, Zakaria Z (2017) Polylactic acid green nanocomposites for automotive applications. In: Jawaid M, Salit MS, Alothman OY (eds) Green energy and technology. Springer International Publishing, Cham, pp 193–208

Hu RH, Jang MH, Kim YJ et al (2010) Fully degradable jute fiber reinforced polylactide composites applicable to car interior panel. Adv Mat Res 123–125:1151–1154. https://doi.org/10.4028/www.scientific.net/AMR.123-125.1151

Notta-Cuvier D, Odent J, Delille R et al (2014) Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007

Badia JD, Santonja-Blasco L, Martínez-Felipe A, Ribes-Greus A (2012) Hygrothermal ageing of reprocessed polylactide. Polym Degrad Stab 97:1881–1890. https://doi.org/10.1016/j.polymdegradstab.2012.06.001

Gil-Castell O, Badia JD, Kittikorn T et al (2014) Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and physico-chemical performance. Polym Degrad Stab 108:212–222. https://doi.org/10.1016/j.polymdegradstab.2014.06.010

Gil-Castell O, Badia JD, Kittikorn T et al (2016) Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites. Polym Degrad Stab 132:87–96. https://doi.org/10.1016/j.polymdegradstab.2016.03.038

Badia JD, Monreal L, Sáenz de Juano-Arbona V et al (2014) Dielectric spectroscopy of reprocessed polylactide. Polym Degrad Stab 107:21–27. https://doi.org/10.1016/j.polymdegradstab.2014.04.023

Chassenieux C, Durand D, Jyotishkumar P, Thomas S (2014) Biopolymers state of the art, new challenges, and opportunities. Handbook of biopolymer-based materials. Wiley-VCH, Weinheim, pp 1–6

Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019

Leu YY, Chow WS (2011) Kinetics of water absorption and thermal properties of poly(lactic acid)/organomontmorillonite/poly(ethylene glycol) nanocomposites. J Vinyl Add Tech 17:40–47. https://doi.org/10.1002/vnl.20259

Ozkoc G, Kemaloglu S (2009) Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J Appl Polym Sci 114:2481–2487. https://doi.org/10.1002/app.30772

Norazlina H, Hadi AA, Qurni AU et al (2019) Effects of multi-walled carbon nanotubes (MWCNTs) on the degradation behavior of plasticized PLA nanocomposites. Polym Bull 76:1453–1469. https://doi.org/10.1007/s00289-018-2454-3

Berthé V, Ferry L, Bénézet JC, Bergeret A (2010) Ageing of different biodegradable polyesters blends mechanical and hygrothermal behavior. Polym Degrad Stab 95:262–269. https://doi.org/10.1016/j.polymdegradstab.2009.11.008

(2008) ISO 62:2008. Plastics - Determination of water absorption

ASTM International (2018) ASTM D570-98, Standard Test Method for Water Absorption of Plastics

Greene JP (2014) Sustainable plastic products. In: Greene JP (ed) Sustainable plastics. John Wiley & Sons Inc, New York, pp 145–186

Gil-Castell O, Andres-Puche R, Dominguez E et al (2020) Influence of substrate and temperature on the biodegradation of polyester-based materials: polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases. Polym Degrad Stab 180:109288. https://doi.org/10.1016/j.polymdegradstab.2020.109288

ASTM International (2004) ASTM D6400-04, Standard Specification for Compostable Plastics

ASTM International (2011) ASTM D5338-11, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions

(2010) DIN EN 13432:2000-12, Packaging Requirements for Packaging Recoverable through Composting and Biodegradation Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging

(2018) ISO 14855-2:2018, Determination of the Ultimate Aerobic Biodegradability of plastic materials under Controlled Composting Conditions

Rodrigues Filho G, Monteiro DS, da Meireles CS et al (2008) Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr Polym 73:74–82. https://doi.org/10.1016/j.carbpol.2007.11.010

Albornoz-Palma G, Betancourt F, Mendonça RT et al (2020) Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115588

Yetiş F, Liu X, Sampson WW, Gong RH (2020) Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid. Eur Polym J 134:109803. https://doi.org/10.1016/J.EURPOLYMJ.2020.109803

Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J Appl Polym Sci 126:E449–E458. https://doi.org/10.1002/APP.36787

ASTM International (2014) ASTM D638-14, Standard Test Method for Tensile Properties of Plastics

(2008) EN-ISO 291:2008 Plastics - Standard atmoshperes for conditioning and testing

(2014) ISO 11358-1:2014 Plastics - Thermogravimetry (TG) of polymers - Part1: General principles

Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere 251:980–990. https://doi.org/10.1007/BF01498927

Lauritzen Jr JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand A Phys Chem 64A:73. https://doi.org/10.6028/JRES.064A.007

Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of poly(l-lactic acid). Polymer (Guildf) 24:175–178. https://doi.org/10.1016/0032-3861(83)90129-5

Ndazi BS, Karlsson S (2011) Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym Lett 5:119–131. https://doi.org/10.3144/expresspolymlett.2011.13

Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly(lactic acid) biocomposites. Polym Degrad Stab 94:1151–1162. https://doi.org/10.1016/j.polymdegradstab.2009.03.025

Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500. https://doi.org/10.1016/j.polymdegradstab.2005.04.006

Hakkarainen M, Albertsson A-C, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52:283–291. https://doi.org/10.1016/0141-3910(96)00009-2

Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16:305–311. https://doi.org/10.1016/0142-9612(95)93258-F

Zhu J, Abeykoon C, Karim N (2021) Investigation into the effects of fillers in polymer processing. Int J Lightweight Mater Manuf 4:370–382. https://doi.org/10.1016/j.ijlmm.2021.04.003

Beltrán FR, Arrieta MP, Gaspar G et al (2020) Effect of Iignocellulosic nanoparticles extracted from yerba mate (Ilex paraguariensis) on the structural, thermal, optical and barrier properties of mechanically recycled poly(lactic acid). Polymers (Basel). https://doi.org/10.3390/POLYM12081690

Sambha’a EL, Lallam A, Jada A (2010) Effect of hydrothermal polylactic acid degradation on polymer molecular weight and surface properties. J Polym Environ 18:532–538. https://doi.org/10.1007/s10924-010-0251-7

Fukushima K, Tabuani D, Dottori M et al (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129. https://doi.org/10.1016/j.polymdegradstab.2011.09.018

Kamau-Devers K, Kortum Z, Miller SA (2019) Hydrothermal aging of bio-based poly(lactic acid) (PLA) wood polymer composites: studies on sorption behavior, morphology, and heat conductance. Constr Build Mater 214:290–302. https://doi.org/10.1016/j.conbuildmat.2019.04.098

Atalay SE, Bezci B, Özdemir B et al (2021) Thermal and environmentally induced degradation behaviors of amorphous and semicrystalline PLAs through rheological analysis. J Polym Environ 29:3412–3426. https://doi.org/10.1007/s10924-021-02128-z

Ahmad Sawpan M, Islam MR, Beg MDH, Pickering K (2019) Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. J Polym Environ 27:942–955. https://doi.org/10.1007/s10924-019-01405-2

Göpferich A, Langer R (1993) The influence of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J Polym Sci A Polym Chem 31:2445–2458. https://doi.org/10.1002/pola.1993.080311004

Mathiowitz E, Jacob J, Pekarek K, Chickering D (1993) Morphological characterization of bioerodible polymers. 3. characterization of the erosion and intact zones in polyanhydrides using scanning electron microscopy. Macromolecules 26:6756–6765. https://doi.org/10.1021/ma00077a010

Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450. https://doi.org/10.1016/j.fpsl.2019.100450

Auras R, Lim L-T, Selke S, Tsuji H (2010) Poly(Lactic Acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons Inc, Hoboken

Badia JD, Gil-Castell O, Ribes-Greus A (2017) Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 137:35–57. https://doi.org/10.1016/j.polymdegradstab.2017.01.002

Martin O (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer (Guildf) 42:6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6

Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci B Polym Phys 42:25–32. https://doi.org/10.1002/polb.10674

Santonja-Blasco L, Moriana R, Badía JD, Ribes-Greus A (2010) Thermal analysis applied to the characterization of degradation in soil of polylactide: I. Calorimetric and viscoelastic analyses. Polym Degrad Stab 95:2185–2191. https://doi.org/10.1016/j.polymdegradstab.2010.08.005

Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer (Guildf) 37:5849–5857. https://doi.org/10.1016/S0032-3861(96)00455-7

Jiang N, Yu T, Li Y et al (2019) Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos Sci Technol 173:15–23. https://doi.org/10.1016/j.compscitech.2019.01.018

Raisipour-Shirazi A, Ahmadi Z, Garmabi H (2018) Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iran Polym J (English Edition) 27:785–794. https://doi.org/10.1007/s13726-018-0651-4

Almasi H, Ghanbarzadeh B, Dehghannya J et al (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Packag Shelf Life 5:21–31. https://doi.org/10.1016/j.fpsl.2015.04.003

Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromol 14:1541–1546. https://doi.org/10.1021/bm400178m

Perić M, Putz R, Paulik C (2019) Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid). Eur Polym J 114:426–433. https://doi.org/10.1016/j.eurpolymj.2019.03.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem