- -

Reading order detection on handwritten documents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reading order detection on handwritten documents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quirós, Lorenzo es_ES
dc.contributor.author Vidal, Enrique es_ES
dc.date.accessioned 2023-11-13T19:03:44Z
dc.date.available 2023-11-13T19:03:44Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 0941-0643 es_ES
dc.identifier.uri http://hdl.handle.net/10251/199583
dc.description.abstract [EN] Recent advances in Handwritten Text Recognition and Document Layout Analysis have made it possible to convert digital images of manuscripts into electronic text. However, providing this text with the correct structure and context is still an open problem that needs to be solved to actually enable extracting the relevant information conveyed by the text. The most important structure needed for a set of text elements is their reading order. Most of the studies on the reading order problem are rule-based approaches and focus on printed documents. Much less attention has been paid so far to handwritten text documents, where the problem becomes particularly important-and challenging. In this work, we propose a new approach to automatically determine the reading order of text regions and lines in handwritten text documents. The task is approached as a sorting problem where the order-relation operator is automatically learned from examples. We experimentally demonstrate the effectiveness of our method on three different datasets at different hierarchical levels. es_ES
dc.description.sponsorship The authors want to thank to the Centre de Recerca d'Història Rural, the National Archives of Finland and Déjean Hervé for facilitating the datasets used in this work, and to Juan Miguel Vilar for the enlighment comments. Also, this work was partially supported by Universitat Politècnica de València under grant FPI-II/900, by Generalitat Valenciana under the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFEDER/2018/025 'Sistemas de fabricación inteligente para la indústria 4.0', by the Ministerio de Ciencia, Innovación y Universidades project DocTIUM (Ref. RTI2018-095645-B-C22), by the BBVA Foundation through the 2019 Digital Humanities research grant 'HistWeather ' Dos Siglos de Datos Climáticos' and by the Agencia Estatal de Investigación under project SimancasSearch (PID2020-116813RB-I00).Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Neural Computing and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Document layout analysis es_ES
dc.subject Reading order es_ES
dc.subject Handwritten text recognition es_ES
dc.title Reading order detection on handwritten documents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00521-022-06948-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116813RB-I00/ES/SEARCHING IN THE SIMANCA ARCHIVE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-II%2F900/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095645-B-C22/ES/TRANSCRIPCION DE DOCUMENTOS CON PLATAFORMAS INTERACTIVAS UBICUAS MULTIMODALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-095645-B-C22//TRANSCRIPCION DE DOCUMENTOS CON PLATAFORMAS INTERACTIVAS UBICUAS MULTIMODALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Quirós, L.; Vidal, E. (2022). Reading order detection on handwritten documents. Neural Computing and Applications. 34(12):9593-9611. https://doi.org/10.1007/s00521-022-06948-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00521-022-06948-5 es_ES
dc.description.upvformatpinicio 9593 es_ES
dc.description.upvformatpfin 9611 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\503206 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Ares Oliveira S, Seguin B, Kaplan F (2018) dhSegment: A generic deep-learning approach for document segmentation. CoRR abs/1804.10371 es_ES
dc.description.references Bluche T (2015) Deep neural networks for large vocabulary handwritten text recognition. Ph.D. thesis, Ecole Doctorale Informatique de Paris-Sud - Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur . Discipline : informatique es_ES
dc.description.references Breuel TM (2003) High performance document layout analysis. In: 2003 Symposium on document image understanding (SDIUT’03) es_ES
dc.description.references Coquenet D, Soullard Y, Chatelain C, Paquet T (2019) Have convolutions already made recurrence obsolete for unconstrained handwritten text recognition? In: 2019 International conference on document analysis and recognition workshops (ICDARW), pp. 65–70. IEEE, Sydney, Australia es_ES
dc.description.references Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge es_ES
dc.description.references Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Transact Pattern Anal Mach Intell 31(5):855–868 es_ES
dc.description.references Grüning T, Leifert G, Strauß T, Labahn R (2018) A Two-Stage Method for Text Line Detection in Historical Documents. CoRR abs/1802.03345 es_ES
dc.description.references Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93 es_ES
dc.description.references Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations (ICLR) es_ES
dc.description.references Kumar R, Vassilvitskii S (2010) Generalized distances between rankings. pp. 571–580. https://doi.org/10.1145/1772690.1772749 es_ES
dc.description.references Lee JY, Park JS, Byun H, Moon J, Lee SW (2002) Automatic generation of structured hyperdocuments from document images. Pattern Recognition 35(2):485–503 es_ES
dc.description.references Malerba D, Ceci M, Berardi M (2008) Machine learning for reading order detection in document image understanding. In: Machine learning in document analysis and recognition, pp. 45–69. Springer, Berlin and Heidelberg es_ES
dc.description.references Martínek J, Lenc L, Král P (2020) Building an efficient OCR system for historical documents with little training data. Neural Comput Applicat 32(23):17209–17227 es_ES
dc.description.references Naoum A, Nothman J, Curran J (2019) Article segmentation in digitised newspapers with a 2d markov model. In: 2019 International conference on document analysis and recognition (ICDAR), pp. 1007–1014 es_ES
dc.description.references Pastor M (2019) Text baseline detection, a single page trained system. Pattern Recognit 94:149–161 es_ES
dc.description.references Prasad A, Déjean H, Meunier J (2019) Versatile layout understanding via conjugate graph. In: 2019 International conference on document analysis and recognition (ICDAR), pp. 287–294 es_ES
dc.description.references Puigcerver J (2018) A probabilistic formulation of keyword spotting. Ph.D. thesis, Univ. Politècnica de València es_ES
dc.description.references Quirós L (2018) Multi-task handwritten document layout analysis. CoRR abs/1806.08852 es_ES
dc.description.references Quirós L, Vidal E (2021) Learning to sort handwritten text lines in reading order through estimated binary order relations. In: 2020 25th International conference on pattern recognition (ICPR). In press es_ES
dc.description.references Romero V, Serrano N, Toselli AH, Sánchez JAn, Vidal E (2011) Handwritten text recognition for historical documents. In: Proc. of the Workshop on language technologies for digital humanities and cultural heritage, pp. 90–96. Hissar, Bulgaria es_ES
dc.description.references Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536 es_ES
dc.description.references Sánchez JA, Romero V, Toselli AH, Villegas M, Vidal E (2019) A set of benchmarks for handwritten text recognition on historical documents. Pattern Recognit 94:122–134 es_ES
dc.description.references Toselli AH, Vidal E, Romero V, Frinken V (2016) HMM word graph based keyword spotting in handwritten document images. Information Sci 370–371:497–518 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem