- -

Reading order detection on handwritten documents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reading order detection on handwritten documents

Mostrar el registro completo del ítem

Quirós, L.; Vidal, E. (2022). Reading order detection on handwritten documents. Neural Computing and Applications. 34(12):9593-9611. https://doi.org/10.1007/s00521-022-06948-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199583

Ficheros en el ítem

Metadatos del ítem

Título: Reading order detection on handwritten documents
Autor: Quirós, Lorenzo Vidal, Enrique
Fecha difusión:
Resumen:
[EN] Recent advances in Handwritten Text Recognition and Document Layout Analysis have made it possible to convert digital images of manuscripts into electronic text. However, providing this text with the correct structure ...[+]
Palabras clave: Document layout analysis , Reading order , Handwritten text recognition
Derechos de uso: Reconocimiento (by)
Fuente:
Neural Computing and Applications. (issn: 0941-0643 )
DOI: 10.1007/s00521-022-06948-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00521-022-06948-5
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116813RB-I00/ES/SEARCHING IN THE SIMANCA ARCHIVE/
info:eu-repo/grantAgreement/UPV//FPI-II%2F900/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095645-B-C22/ES/TRANSCRIPCION DE DOCUMENTOS CON PLATAFORMAS INTERACTIVAS UBICUAS MULTIMODALES/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/
info:eu-repo/grantAgreement/AEI//RTI2018-095645-B-C22//TRANSCRIPCION DE DOCUMENTOS CON PLATAFORMAS INTERACTIVAS UBICUAS MULTIMODALES/
Agradecimientos:
The authors want to thank to the Centre de Recerca d'Història Rural, the National Archives of Finland and Déjean Hervé for facilitating the datasets used in this work, and to Juan Miguel Vilar for the enlighment comments. ...[+]
Tipo: Artículo

References

Ares Oliveira S, Seguin B, Kaplan F (2018) dhSegment: A generic deep-learning approach for document segmentation. CoRR abs/1804.10371

Bluche T (2015) Deep neural networks for large vocabulary handwritten text recognition. Ph.D. thesis, Ecole Doctorale Informatique de Paris-Sud - Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur . Discipline : informatique

Breuel TM (2003) High performance document layout analysis. In: 2003 Symposium on document image understanding (SDIUT’03) [+]
Ares Oliveira S, Seguin B, Kaplan F (2018) dhSegment: A generic deep-learning approach for document segmentation. CoRR abs/1804.10371

Bluche T (2015) Deep neural networks for large vocabulary handwritten text recognition. Ph.D. thesis, Ecole Doctorale Informatique de Paris-Sud - Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur . Discipline : informatique

Breuel TM (2003) High performance document layout analysis. In: 2003 Symposium on document image understanding (SDIUT’03)

Coquenet D, Soullard Y, Chatelain C, Paquet T (2019) Have convolutions already made recurrence obsolete for unconstrained handwritten text recognition? In: 2019 International conference on document analysis and recognition workshops (ICDARW), pp. 65–70. IEEE, Sydney, Australia

Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge

Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Transact Pattern Anal Mach Intell 31(5):855–868

Grüning T, Leifert G, Strauß T, Labahn R (2018) A Two-Stage Method for Text Line Detection in Historical Documents. CoRR abs/1802.03345

Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations (ICLR)

Kumar R, Vassilvitskii S (2010) Generalized distances between rankings. pp. 571–580. https://doi.org/10.1145/1772690.1772749

Lee JY, Park JS, Byun H, Moon J, Lee SW (2002) Automatic generation of structured hyperdocuments from document images. Pattern Recognition 35(2):485–503

Malerba D, Ceci M, Berardi M (2008) Machine learning for reading order detection in document image understanding. In: Machine learning in document analysis and recognition, pp. 45–69. Springer, Berlin and Heidelberg

Martínek J, Lenc L, Král P (2020) Building an efficient OCR system for historical documents with little training data. Neural Comput Applicat 32(23):17209–17227

Naoum A, Nothman J, Curran J (2019) Article segmentation in digitised newspapers with a 2d markov model. In: 2019 International conference on document analysis and recognition (ICDAR), pp. 1007–1014

Pastor M (2019) Text baseline detection, a single page trained system. Pattern Recognit 94:149–161

Prasad A, Déjean H, Meunier J (2019) Versatile layout understanding via conjugate graph. In: 2019 International conference on document analysis and recognition (ICDAR), pp. 287–294

Puigcerver J (2018) A probabilistic formulation of keyword spotting. Ph.D. thesis, Univ. Politècnica de València

Quirós L (2018) Multi-task handwritten document layout analysis. CoRR abs/1806.08852

Quirós L, Vidal E (2021) Learning to sort handwritten text lines in reading order through estimated binary order relations. In: 2020 25th International conference on pattern recognition (ICPR). In press

Romero V, Serrano N, Toselli AH, Sánchez JAn, Vidal E (2011) Handwritten text recognition for historical documents. In: Proc. of the Workshop on language technologies for digital humanities and cultural heritage, pp. 90–96. Hissar, Bulgaria

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

Sánchez JA, Romero V, Toselli AH, Villegas M, Vidal E (2019) A set of benchmarks for handwritten text recognition on historical documents. Pattern Recognit 94:122–134

Toselli AH, Vidal E, Romero V, Frinken V (2016) HMM word graph based keyword spotting in handwritten document images. Information Sci 370–371:497–518

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem