Dongarra JJ, Du Croz J, Hammarling S, Duff I (1990) A set of level 3 basic linear algebra subprograms. ACM Trans Math Softw 16(1):1–17
Goto K, van de Geijn RA (2008) Anatomy of a high-performance matrix multiplication. ACM Trans Math Softw 34(3):12:1-12:25
Van Zee FG, van de Geijn RA (2015) BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans Math Softw 41(3):14:1-14:33
[+]
Dongarra JJ, Du Croz J, Hammarling S, Duff I (1990) A set of level 3 basic linear algebra subprograms. ACM Trans Math Softw 16(1):1–17
Goto K, van de Geijn RA (2008) Anatomy of a high-performance matrix multiplication. ACM Trans Math Softw 34(3):12:1-12:25
Van Zee FG, van de Geijn RA (2015) BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans Math Softw 41(3):14:1-14:33
Xianyi Z, Qian W, Yunquan Z (2012) Model-driven level 3 BLAS performance optimization on Loongson 3A processor. In: 2012 IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS)
Smith TM, van de Geijn RA (2019) The MOMMS family of matrix multiplication algorithms. CoRR, vol. abs/1904.05717. [Online]. Available: http://arxiv.org/abs/1904.05717
Gunnels JA, Gustavson FG, Henry GM, van de Geijn RA (2004) A family of high-performance matrix multiplication algorithms. In: Proc. 7th Int. Conf. on Applied Parallel Computing: State of the Art in Scientific Computing, ser. PARA’04, pp 256-265
Castelló A, Igual FD, Quintana-Ortí ES (2022) Anatomy of the BLIS family of algorithms for matrix multiplication. In: 2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp 92–99
Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document processing. In: International Workshop on Frontiers in Handwriting Recognition
Barrachina S, Dolz MF, San Juan P, Quintana-Ortí ES (2022) Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors. J Parallel Distrib Comput 167(C):240–254
Low TM, Igual FD, Smith TM, Quintana-Ortí ES (2016) Analytical modeling is enough for high-performance BLIS. ACM Trans Math Softw 43(2):12:1-12:18
Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for multicore architectures. Commun ACM 52(4):65–76
Dowd K, Severance CR (1998) High performance computing, 2nd ed. O’Reilly
Zee FGV, Smith TM, Marker B, Low TM, Geijn RAVD, Igual FD, Smelyanskiy M, Zhang X, Kistler M, Austel V, Gunnels JA, Killough L (2016) The BLIS framework: experiments in portability. ACM Trans Math Softw 42(2):1–19
Smith TM, van de Geijn R, Smelyanskiy M, Hammond JR, Zee FGV (2014) Anatomy of high-performance many-threaded matrix multiplication. In: Proc. IEEE 28th Int. Parallel and Distributed Processing Symp. ser. IPDPS’14, pp 1049–1059
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556
Szegedy C, et al. (2014) Going deeper with convolutions, CoRR, vol. abs/1409.4842, [Online]. Available: http://arxiv.org/abs/1409.4842
[-]