- -

Fixed points results for various types of interpolative cyclic contraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points results for various types of interpolative cyclic contraction

Mostrar el registro completo del ítem

Edraoui, M.; El Koufi, A.; Semami, S. (2023). Fixed points results for various types of interpolative cyclic contraction. Applied General Topology. 24(2):247-252. https://doi.org/10.4995/agt.2023.19515

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199643

Ficheros en el ítem

Metadatos del ítem

Título: Fixed points results for various types of interpolative cyclic contraction
Autor: Edraoui, Mohamed El koufi, Amine Semami, Soukaina
Fecha difusión:
Resumen:
[EN] In this paper, we introduce four new types of contractions called in this order Kannan-type cyclic contraction via interpolation, interpolative Ćirić-Reich-Rus type cyclic contraction, and we prove the existence and ...[+]
Palabras clave: Cyclic mapping , Interpolative Kannan , Fixed point , Metric space , Interpolative Ćirić-Reich-Rus
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.19515
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.19515
Tipo: Artículo

References

Erdal Karapınar and Inci M. Erhan, Best Proximity Point on Different Type Contractions Applied Mathematics & Information Sciences 5(3) (2011), 558-569.

E. Karapinar, Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135

R. Kannan, Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76 (1968). https://doi.org/10.2307/2316437 [+]
Erdal Karapınar and Inci M. Erhan, Best Proximity Point on Different Type Contractions Applied Mathematics & Information Sciences 5(3) (2011), 558-569.

E. Karapinar, Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135

R. Kannan, Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76 (1968). https://doi.org/10.2307/2316437

Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed point fo mappings satisfyaing cyclical contractive conditions. Fixed Point Theory2003, 4, 79-89.

M. Edraoui, M. Aamri, S. Lazaiz, Relatively Cyclic and Noncyclic P-Contractions in Locally K-Convex Space. Axioms 2019, 8, 96. https://doi.org/10.3390/axioms8030096

E. Karapinar, O. Alqahtani and H. Aydi. On interpolative,Hardy-Rogers type contractions. Symmetry 2019, 11,8. https://doi.org/10.3390/sym11010008

E. Karapinar, R. Agarwal and H. Aydi, Interpolative Reich-Rus-Ciri'c type contractions ' on partial metric spaces. Mathematics 2018,6, 256. https://doi.org/10.3390/math6110256

N. Ta¸s, "Interpolative contractions and discontinuity at fixed point", Appl. Gen. Topol., vol. 24, no. 1, pp. 145-156, Apr. 2023. https://doi.org/10.4995/agt.2023.18552

Mujahid Abbas, Rizwan Anjum and Shakeela Riast Fixed point results of enriched interpolativeKannan type operators with applications Appl. Gen. Topol. 23, no. 2 (2022), 391-404. https://doi.org/10.4995/agt.2022.16701

K. Roy and S. Panja, "From interpolative contractive mappings to generalized Ciricquasi contraction mappings", Appl. Gen. Topol., vol. 22, no. 1, pp. 109-120, Apr. 2021. https://doi.org/10.4995/agt.2021.14045

R. K. Bisht and V. Rakocevic, "Discontinuity at fixed point and metric completeness", Appl. Gen. Topol.,vol. 21, no. 2, pp. 349-362, https://doi.org/10.4995/agt.2020.13943

E. Karapinar, "Revisiting Ciric type nonunique fixed point theorems via interpolation", Appl. Gen. Topol., vol. 22, no. 2, pp. 483-496, Dec. 2021. https://doi.org/10.4995/agt.2021.16562

M. Asadi, Discontinuity of control function in the ( , ϕ, θ) -contraction in metric spaces, Filomat, 31 (17), 5427-5433 (2017). https://doi.org/10.2298/FIL1717427A

M. Asadi, S. M. Vaezpour, V. Rakoˇcevi'c and B. E. Rhoades, Fixed point theorems for contractive mapping in cone metric spaces, Mathematical Communications 16, no. 1 (2011), 147-155.

M. Eshraghisamani, S. M. Vaezpour, and M. Asadi, "New fixed point result on Branciari metric space," Journal of Mathematical Analysis, vol. 8, no. 6, pp. 132-141, 2017.

H. Monfared, M. Asadi, and A. Farajzadeh, "New generalization of Darbo's fixed point theorem via α-admissible simulation functions with application," Sahand Communications in Mathematical Analysis, vol. 17, no. 2, pp. 161-171, 2020

Monfared, H., Asadi, M., Azhini " (ψ, φ)-contractions for α-admissible mappings on metric spaces and related fixed point results", Commun. Nonlinear Anal. 2 (2016) 86-94.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem