- -

Fixed points results for various types of interpolative cyclic contraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points results for various types of interpolative cyclic contraction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Edraoui, Mohamed es_ES
dc.contributor.author El koufi, Amine es_ES
dc.contributor.author Semami, Soukaina es_ES
dc.date.accessioned 2023-11-14T13:36:08Z
dc.date.available 2023-11-14T13:36:08Z
dc.date.issued 2023-10-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/199643
dc.description.abstract [EN] In this paper, we introduce four new types of contractions called in this order Kannan-type cyclic contraction via interpolation, interpolative Ćirić-Reich-Rus type cyclic contraction, and we prove the existence and uniqueness for a fixed point for each situation. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cyclic mapping es_ES
dc.subject Interpolative Kannan es_ES
dc.subject Fixed point es_ES
dc.subject Metric space es_ES
dc.subject Interpolative Ćirić-Reich-Rus es_ES
dc.title Fixed points results for various types of interpolative cyclic contraction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.19515
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Edraoui, M.; El Koufi, A.; Semami, S. (2023). Fixed points results for various types of interpolative cyclic contraction. Applied General Topology. 24(2):247-252. https://doi.org/10.4995/agt.2023.19515 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.19515 es_ES
dc.description.upvformatpinicio 247 es_ES
dc.description.upvformatpfin 252 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\19515 es_ES
dc.description.references Erdal Karapınar and Inci M. Erhan, Best Proximity Point on Different Type Contractions Applied Mathematics & Information Sciences 5(3) (2011), 558-569. es_ES
dc.description.references E. Karapinar, Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135 es_ES
dc.description.references R. Kannan, Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76 (1968). https://doi.org/10.2307/2316437 es_ES
dc.description.references Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed point fo mappings satisfyaing cyclical contractive conditions. Fixed Point Theory2003, 4, 79-89. es_ES
dc.description.references M. Edraoui, M. Aamri, S. Lazaiz, Relatively Cyclic and Noncyclic P-Contractions in Locally K-Convex Space. Axioms 2019, 8, 96. https://doi.org/10.3390/axioms8030096 es_ES
dc.description.references E. Karapinar, O. Alqahtani and H. Aydi. On interpolative,Hardy-Rogers type contractions. Symmetry 2019, 11,8. https://doi.org/10.3390/sym11010008 es_ES
dc.description.references E. Karapinar, R. Agarwal and H. Aydi, Interpolative Reich-Rus-Ciri'c type contractions ' on partial metric spaces. Mathematics 2018,6, 256. https://doi.org/10.3390/math6110256 es_ES
dc.description.references N. Ta¸s, "Interpolative contractions and discontinuity at fixed point", Appl. Gen. Topol., vol. 24, no. 1, pp. 145-156, Apr. 2023. https://doi.org/10.4995/agt.2023.18552 es_ES
dc.description.references Mujahid Abbas, Rizwan Anjum and Shakeela Riast Fixed point results of enriched interpolativeKannan type operators with applications Appl. Gen. Topol. 23, no. 2 (2022), 391-404. https://doi.org/10.4995/agt.2022.16701 es_ES
dc.description.references K. Roy and S. Panja, "From interpolative contractive mappings to generalized Ciricquasi contraction mappings", Appl. Gen. Topol., vol. 22, no. 1, pp. 109-120, Apr. 2021. https://doi.org/10.4995/agt.2021.14045 es_ES
dc.description.references R. K. Bisht and V. Rakocevic, "Discontinuity at fixed point and metric completeness", Appl. Gen. Topol.,vol. 21, no. 2, pp. 349-362, https://doi.org/10.4995/agt.2020.13943 es_ES
dc.description.references E. Karapinar, "Revisiting Ciric type nonunique fixed point theorems via interpolation", Appl. Gen. Topol., vol. 22, no. 2, pp. 483-496, Dec. 2021. https://doi.org/10.4995/agt.2021.16562 es_ES
dc.description.references M. Asadi, Discontinuity of control function in the ( , ϕ, θ) -contraction in metric spaces, Filomat, 31 (17), 5427-5433 (2017). https://doi.org/10.2298/FIL1717427A es_ES
dc.description.references M. Asadi, S. M. Vaezpour, V. Rakoˇcevi'c and B. E. Rhoades, Fixed point theorems for contractive mapping in cone metric spaces, Mathematical Communications 16, no. 1 (2011), 147-155. es_ES
dc.description.references M. Eshraghisamani, S. M. Vaezpour, and M. Asadi, "New fixed point result on Branciari metric space," Journal of Mathematical Analysis, vol. 8, no. 6, pp. 132-141, 2017. es_ES
dc.description.references H. Monfared, M. Asadi, and A. Farajzadeh, "New generalization of Darbo's fixed point theorem via α-admissible simulation functions with application," Sahand Communications in Mathematical Analysis, vol. 17, no. 2, pp. 161-171, 2020 es_ES
dc.description.references Monfared, H., Asadi, M., Azhini " (ψ, φ)-contractions for α-admissible mappings on metric spaces and related fixed point results", Commun. Nonlinear Anal. 2 (2016) 86-94. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem