- -

Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation

Mostrar el registro completo del ítem

Prasad, G.; Deshwal, S.; Srivastav, RK. (2023). Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation. Applied General Topology. 24(2):307-322. https://doi.org/10.4995/agt.2023.18993

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199647

Ficheros en el ítem

Metadatos del ítem

Título: Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation
Autor: Prasad, Gopi Deshwal, Sheetal Srivastav, Rupesh K.
Fecha difusión:
Resumen:
[EN] In this paper, we prove the existence of fixed point results for set-valued mappings in Menger probabilistic metric spaces equipped with an amorphous binary relation and a Hadžić -type t-norm. For the usability of ...[+]
Palabras clave: Fixed point , Set-valued mapping , Bernstein operator
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.18993
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.18993
Tipo: Artículo

References

A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17, no. 4 (2015), 693-702. https://doi.org/10.1007/s11784-015-0247-y

A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms 11, no. 7 (2022), 316. https://doi.org/10.3390/axioms11070316

H. Argoubi, M. Jleli and B. Samet, The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with a graph, Fixed Point Theory Appl. 2015 (2015), 113. https://doi.org/10.1186/s13663-015-0361-y [+]
A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17, no. 4 (2015), 693-702. https://doi.org/10.1007/s11784-015-0247-y

A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms 11, no. 7 (2022), 316. https://doi.org/10.3390/axioms11070316

H. Argoubi, M. Jleli and B. Samet, The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with a graph, Fixed Point Theory Appl. 2015 (2015), 113. https://doi.org/10.1186/s13663-015-0361-y

S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181

S. K. Bhandari, D. Gopal and P. Konar, Probabilistic α-min Ciric type contraction results using a control function, AIMS Mathematics 5, no. 2 (2020), 1186-1198. https://doi.org/10.3934/math.2020082

N. Deo, M. A. Noor and M. A. Siddiqui, On approximation by a class of new Bernstein type operators, Appl. Math. Comput. 201 (2008), 604-612. https://doi.org/10.1016/j.amc.2007.12.056

T. Dinevari and M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl. 405 (2013), 507-517. https://doi.org/10.1016/j.jmaa.2013.04.014

J.-X. Fang, Fixed point theorems of local contraction mappings on Menger spaces, Appl. Math. Mech. 12 (1991), 363-372. https://doi.org/10.1007/BF02020399

J.-X. Fang, A note on fixed point theorems of Hadžić, Fuzzy Sets Syst. 48 (1992), 391-395. https://doi.org/10.1016/0165-0114(92)90355-8

J.-X. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Anal. 71 (2009), 1833-1843. https://doi.org/10.1016/j.na.2009.01.018

O. Hadžić, Fixed point theorems for multivalued mappings in probabilistic metric spaces, Fuzzy Sets Syst. 88 (1997), 219-226. https://doi.org/10.1016/S0165-0114(96)00072-3

O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht (2001). https://doi.org/10.1007/978-94-017-1560-7

J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1

T. Kamran, M. Samreen and N. Shahzad, Probabilistic G-contractions, Fixed Point Theory Appl. 2013 (2013), 223. https://doi.org/10.1186/1687-1812-2013-223

R. P. Kelisky and T. J. Rivlin, Iterates of Bernstein polynomials, Pac. J. Math. 21 (1967), 511-520. https://doi.org/10.2140/pjm.1967.21.511

B. Kolman, R. C. Busby and S. Ross, Discrete mathematical structures, Third Edition, PHI Pvt. Ltd., New Delhi, 2000.

S. Lipschutz, Schaum's Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, (1964).

J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239. https://doi.org/10.1007/s11083-005-9018-5

S. B. Jr. Nadler, Multivalued contraction mappings. Pac. J. Math. 30 (1969), 475-487. https://doi.org/10.2140/pjm.1969.30.475

G. Prasad, Coincidence points of relational ψ-contractions and an application, Afrika Mathematica 32, no. 6-7 (2021), 1475-1490. https://doi.org/10.1007/s13370-021-00913-6

G. Prasad, Fixed points of Kannan contractive mappings in relational metric spaces, J. Anal. 29, no. 3 (2021), 669-684. https://doi.org/10.1007/s41478-020-00273-7

G. Prasad and H. Işık, On solution of boundary value problems via weak contractions, J. Funct. Spaces 2022 (2022), Article ID 6799205. https://doi.org/10.1155/2022/6799205

A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132, no. 5 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4

B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal. 13, no. 2 (2012), 82-97.

B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pac. J. Math. 10 (1960), 673-675. https://doi.org/10.2140/pjm.1960.10.673

B. Schweizer and Sklar, Probabilistic Metric Spaces, North-Holland, New York (1983).

M. Turinici, Fixed points for monotone iteratively local contractions, Demonstr. Math. 19, no. 1 (1986), 171-180.

M. Turinici, Ran and Reuring's theorems in ordered metric spaces, J. Indian Math. Soc. 78 (2011), 207-214.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem